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HUB EFFECTS IN PROPELLER DESIGN AND ANALYSIS 
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Mo-Hwa Wang 

,1 

ABSTRACT 

A numerical model is established for the design of propeller blade 
shape for a prescribed circulation distribution and a given hub geometry. 
The vortex lattice approach is adapted for blades and their wakes. The hub 
is represented by a distribution of dipoles which ends at the hub apex.  It 
is shown that consideration of the hub results in a lower pitch and lower 
camber at the inner radii. 

An iterative method is developed for analyzing the interference 
between the blades and the hub.  It is shown that the circulation at the 
root of a propeller with a hub is larger than the circulation at the root 
of a propeller without a hub.  Two examples show that the increase in 
thrust due to hub effects has the same order of magnitude as the drag force 
effects on the hub for propellers which are moderately loaded at the hub. 

Experiments are carried out for comparison with the numerical results. 
Excellent agreement is obtained in the circulation distribution for a 
conventional propeller, and fair agreement for a controllable pitch 
propeller.  Experimental results show that the circulation is, roughly 
speaking, conserved.  A method for estimating the drag force on the hub due 
to the hub vortex is established by assuming that the circulation is 
conserved. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

Current trends in propeller design have led to extremely complex blade 

shapes, e.g., highly skewed propellers.  This means that empirical methods 

of design or analysis may be less useful due to the shortage of data. As 

digital computers become more powerful, the calculation of fluid problems 

becomes faster and new techniques for improving the accuracy of numerical 

schemes become feasible and necessary. 

Several lifting surface design and analysis methods have been 

developed, for instance, MIT's PBDIO (propeller blade design) and PSF2 

(propeller steady force analysis) [Greeley and Kerwin, 1982].  Three 

assumptions were made in these methods:  the hull, the propeller hub, and 

the free surface were ignored. 

Vorus [1976] investigated the problem of propeller-induced vibrations 

at very high and very low frequency, which simplifies the free surface con- 

dition, by modeling the ship stern as a semi-infinite flat plate.  Breslin 

[1978] studied the propeller-induced hull forces by a source distribution 

on the hull.  Huang and Cox [1977] showed that thrust deduction can be 

predicted by inviscld flow analysis.  Breslin, Van Houten, Kerwin, and 

Johnsson [1982] studied the prediction of vibratory pressures, forces, and 

moments induced on ship hulls by intermittently cavitating propellers.  The 

presence of the hull and the free surface will be ignored in this thesis. 

The interference between the propeller blade and the hub will be 

considered In this thesis.  The hub effects may be important especially for 

the propeller with a large hub such as a controllable pitch propeller.  In 



August 1974, after 2000 hours of service, the USS Barbey, a destroyer 

escort, lost all five blades from the hub during a crash in an astern 

maneuver [Wind, 1978].  Wind developed a minimum hub size criterion from a 

structural safety point of view.  He recommended increasing the hub size 

for Barbey from 1320 mm to 1500 mm and estimated a loss of efficiency 

roughly proportional to the loss of disc area.  From a hydrodynamic point 

of view, a larger hub has a larger influence on the blade, so it is 

necessary to modify the design procedure by considering the hub effect. 

The comparison of efficiency between these two designs will then become 

meaningful. 

The force on the hub may be an important factor for propeller design, 

especially for those propellers with a non-zero circulation at the hub. A 

good example is an early torpedo propeller design which resulted in 

unusually heavy loading at the hub [McCormick, Eisenhuth, and Lynn, 1956]. 

It was found experimentally that the thrust was reduced by ^5% due to a 

very strong vortex core shed from the hub on the afterbody of the hub. In 

order to calculate the force on the hub, study should be made of propeller 

design/analysis with hub effects considered.    'i 

This thesis has three parts.  The first part develops a numerical 

model for designing a propeller blade under the effects of a prescribed hub 

geometry.  The second part modifies this model in order to analyze 

combinations of blades and hub under off-design conditions. The third part 

presents experiments to verify the accuracy of the numerical model.  Also, 

the structure of the hub vortex, and the force generated by it, will be 

experimentally investigated.  Because the form of the hub vortex depends on 

the viscous interaction between a complicated external flow and a rotating 

body — the hub, there is no attempt to predict the size or strength of the 



hub vortex theoretically. A method of estimating the force generated by 

the hub vortex is the goal of this thesis. 

Some background on research into interactions between blades and hub 

will be presented here.  Although the hub effect is not considered in 

recent lifting surface theory, e.g., Greeley and Kerwin [1982], the hub was 

considered in early years when the propeller was designed roughly by 

lifting line theory.  Lerbs' [1952] induction factor method had a finite or 

zero hub in optimum or non-optimum propellers. The hub was treated as an 

infinitely long cylinder of radius r^j with two boundary conditions, namely, 

the circulation and the radial velocity component are both zero at the hub. 

For small r^^, the influence of the latter boundary condition was small and 

was neglected.  As for the bound circulation on the hub, Lerbs argued that 

the circulation was zero at the hub when approaching r^  from inside the 

hub.  When approaching r-^  from outside, the circulation approached zero 

continuously because the pressures tended to be equalized by a flow from 

the pressure side of one blade to the suction side of the adjacent blade. 

After Lerbs, there were several authors who treated the optimum 

propeller with a large hub as an infinitely long cylinder (e.g., McCormick, 

[1955]; Tachmindji, [1956]; Tachmindji and Milam, [1957]; Thorsen, [1962]; 

and Kerwin and Leopold, [196^1]). 

McCormick [1955] extended Goldstein's [1929] zero hub solution to the 

finite hub with infinite length.  He formulated the potential problem for 

lightly loaded lifting line with vanished normal velocity conditions on the 

hub and on the trailers.  The solution for velocity potential was an 

infinite series of modified Bessel functions and Lommel's function. The 

bound circulation was given by the jump in the velocity potential at the 

trailing vortex sheets.  He found that the circulation was not zero at the 
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hub.  The slope of the circulation at the hub was almost zero in his 

results, although this was not pointed out in the paper. The hub effect 

was significant near the blade root.  As an example, the circulation 

increased by a factor of 1.56 (of the zero hub case) for a hub with a 

radius one-fifth that of a two-bladed propeller.  The hub effect was not as 

pronounced for a propeller with a larger number of blades. 

Kerwin and Leopold [195^] used a vortex lattice to represent the 

trailing vortex.  They,assumed that the slope of the bound circulation at 

the hub was zero and used an image system for the vortex in the hub in 

order to satisfy the normal velocity boundary conditions at the hub.  This 

was based upon the assumption that the 2-D vortex image theory is 

approximately valid for the 3-D case provided the pitch angle is 

sufficiently high.  Table 2 in their paper showed that this approximation 

was excellent for vortices near the hub, but not for the distant elements. 

However, the latter was very small, so that perfect cancellation was 

unimportant.  Since the image system may not be sufficiently accurate in 

all cases, a scheme employing a source-sink distribution on the surface of 

the hub cylinder was considered.  The optimum circulation at the hub from 

their results was not zero.     ■     ., ,/ 

Wald [1964] pointed out that the treatment of the optimum propeller 

with a large hub as an infinitely long cylinder was not correct because 

this did not correspond to the wake condition.  The problem was restated as 

one of finding a distribution of circulation surrounding a hub which was 

transformed into true helicoidal sheets following the deformation which 

occurs at the apex of the hub.  A solution was given for the infinite- 

bladed propeller.  The circulation at the hub of an optimum propeller was 

zero. However, according to Wald, the optimum circulation on the blade 
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would not decrease to zero at the hub when there was a long hub vortex 

cavity. 

Andrews and Cummings [1972] adapted Wald's fictitious propeller 

concept plus Kerwin's image vortex concept. The hub shape was represented 

by a line sink of constant strength.  The strength, length, and position of 

the line sink were determined in order to satisfy boundary conditions of 

the hub at three points:  hub radius at infinity upstream, hub radius at 

the propeller, and a stagnation point at the hub end.  The boundary 

streamline at the propeller tip is then followed back into the wake to find 

the radius of the fictitious zero-hub propeller.  The thrust and torque 

versus rpm calculations were performed using a lifting line model of this 

fictitious zero-hub optimum propeller (Lerbs' method), assuming that two 

propellers which generate the same wake have the same thrust and torque 

characteristics as Wald's ideal.  The circulation distribution from the 

zero-hub propeller was moved up to corresponding locations at the actual 

propeller plane.  Images of the trailing vortices were then added in the 

hub to approximate the hub surface boundary condition as was done by Kerwin 

and Leopold.  These image vortices end at the hub apex.  An iterative pro- 

cedure was used to determine the hydrodynamic pitch angle and the induced 

velocity.  Then the actual shape of the blades was determined by Kerwin's 

lifting surface.  Figure 7 in their paper showed the pitch and camber 

reduced very much. 

Ludolph [1977] represented the hub by a series of constant ring 

sources.  The strength of each of these rings was determined in such a way 

that the average normal velocity vanished on the hub.  He calculated the 

lift by two methods:  one ignored the hub, the other accounted for the hub. 

He found that the difference between the two methods was more pronounced if 
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the bound circulation at the hub was zero than if it was not.  He also 

found that, for the case when the bound circulation was zero, the hub 

effect was smaller when the point of maximum circulation was moved radially 

outward.  Figures 12 and 16 in his paper showed some problems:  the lifting 

line result was quite different from the lifting surface result.  Probably, 

the constant strength source ring was not appropriate. 

Recently, Hess and Valarezo [1985] used surface panel methods to model 

the propeller blade with sources and dipoles and to model the hub with 

sources.  The sides of the panels on the hub were either parallel or per- 

pendicular to the axis of rotation.  This led to panels with irregular size 

on the hub near the blades or the trailing vortices.  The trailing vortices 

had a pure helical wake.  A lift "carry over" was used from the blade-hub 

intersection to the axis of rotation, implying that the bound circulation 

was finite but with zero slope at the hub.  The "carry over" [see Hess, 

1972] meant that an extra strip, from hub surface to hub center, carried a 

dipole with constant strength which equaled the strength of a dipole of the 

first strip on the blade.  A concentrated vortex — a hub vortex — was 

formed along the axis of rotation.  The strength of the hub vortex equaled 

the sum of all the carried-dipole strengths of all the blades. 

Concerning the formation of the hub vortex, Saunders [1957] said that 

there were two theories.  One theory held that the flow close to the hub 

surface did not have concentrated root vortices.  Instead, the flow of the 

field was uniform.  When the water particles moved toward the hub apex, the 

tangential velocity became faster and a hub vortex was formed at the hub 

apex.  The other theory held that there were root vortices coming off the 

trailing edges of the blades just as the tip vortices were.  The hub vortex 

was formed by the coalescence of those root vortices. 
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CHAPTER 2 

AXISYMMETRIC BODY 

Before studying the interference of blades and hub, it is necessary to 

investigate an axisymmetric body. A real marine propeller always has a 

long shaft linking it to the ship stern.  In order to isolate the propeller 

from the ship, an axisymmetric body for modeling the hub is easier to 

handle than a semi-infinite long shaft.  This artificial hub may produce 

different results of blade shape if the hub has different length in the 

forebody — the artificial shaft.  In short, a study on the bared hub is 

just a start for a more complex problem. 

2.1  Vortex Rings 

In potential flow, a surface singularity distribution method is always 

suitable for modeling an arbitrary body shape.  For an axisymmetric body, 

vortex rings or source rings may be a reasonable choice.  Since we plan to 

use a vortex lattice to represent the combination of the blades and hub, 

vortex rings will be used to represent the axisymmetric body. 

From the Biot-Savart law 

^^  irr 

the induced velocities due to a vortex ring with center at the origin are 

derived [Kuchemann and V/eber, 1953]. .  ■ ;• 
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The axial velocity v^ is 

'-\F'7-} 
0   0"* 0 

 1  KCk) 
fe -'] 
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m' ^ fc - ^] 
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(2.2) 

and the radial velocity Vj, is 
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X 
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where 
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m' ^ L- ^ ^] 

K(k)   = 
TT/2 1 

0       i 
da (2.4) 

1   - k^sin^a 

fir/2 
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Tp = vortex ring radius 

r = vortex ring strength — its sense is defined in Figure 2.1 

r = radial distance from x-axis to field point 

Figure 2.1  Vortex Ring Notation 

V is an even function of x, while v is an odd function of x.  There is a 

table of V and Vj, in [KUchemann and Weber, 1953]- K(k) and E(k) are 

complete elliptic integrals which may be found in IMSL subroutines. 

2.2 Modeling an Axisymmetric Body by Vortex Rings 

In order to solve the problem of an axisymmetric body in a uniform 

flow with the inflow parallel to the body axis, a finite number of vortex 

rings are spaced equally over the length of the body.  The radius of each 

ring is equal to the local body radius.  The strengths of the vortex rings 

are unknowns to be determined by solving a boundary value problem.  Control 

points, equal in number to the vortex rings, are located on the body 

surface with one control point at the middle of any two adjacent rings. 
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The last control point, the most downstream one, is at the middle of the 

last ring and the body apex.  The boundary condition at each control point 

is that the total velocities at these points have zero normal velocity 

components. Thus, there is a set of simultaneous linear algebraic 

equations for unknown vortex ring strengths. " 

Once the vortex ring strengths are solved, the velocity at any point 

can be calculated by superimposing the velocities induced by vortex rings 

to the inflow.  As for the surface velocities, an additional jump velocity 

by vortex sheet should be imposed as well. 

For demonstration, five vortex rings are chosen to represent an 

axisymmetric body as shown in Figure 2.2.  Only half of the body is shown. 

AX    I Ax    I  AX    I Ax    I  Ax   I  AX 

the last 
control point 

I.5AX     'Ax    I  Ax    'AX     I   L5AX 

Figure 2.2 Vortex Rings Representing a Half Axisymmetric Body 

The concentrated vortex rings are redistributed into constant vortex 

sheets as follows: 
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_^_  2 ^ 
'• ^ I AX ^ 3 AX 

r       r       r 
^2 ° Ax    ^3  Ax    ^^  Ax -'    , .        ^^'^^ 

5  3 Ax 

The Jump velocity Ug is tangential to the surface and has a magnitude 

one half that of the vortex sheet. At the first control point, for 

example, , 

1 
"s = 2 

'1   '2 
(2.6) 

2.3 Rankine Ovoid ■- 

A Rankine ovoid is a good example of an axisymmetric body with exact 

solutions.  It is a superposition of a source with strength m located at 

(-a,0,0) and a sink with strength -m located at (a,0,0), and a uniform 

Inflow U [Newman, 1977]. 

The body shape is controlled by the following equation 

2ITUR^        X + a 

[(x + a)' + R"]^/2  ^(j^ _ 3)2 ^ j^2^l/2 

where R(x) is the radius of the body at x. 

= 0 (2.7) 



2.iJ Comparison Axisymmetric Body Using Vortex Rings with Exact Solution 
from Rankine Ovoid 

Two Rankine ovoids using the vortex ring approximation are studied. 

One has a slenderness ratio of 1:5 and the other has a slenderness ratio 

of 1:2.22. The nondimensional vortex ring strengths, r/2TTU, and the 

surface velocity errors in percent of uniform inflow velocity are shown in 

Figure 2.3 and Figure 2.4 for these two ovoids respectively.  There are 48 

vortex rings for each body.  The errors are smaller in a long body than in 

a fat body.  The errors are smaller in the middle of the body than at the 

ends for either body. . ' 

A modification was made to improve the accuracy of velocities by 

adding a central source/sink line along the body axis, with source/sink 

strengths determined by slender body theory, i.e., 

A = - dA(x) 
2TT     dx ^2.8) 

where A(x) is the cross sectional area at x.   , ' . 

The improvement is immediately seen in Figure 2.5 and Figure 2.6. 

The prediction of field point velocities has opposite results.  The 

errors from the model with vortex rings are smaller than from the model 

with vortex rings plus central source/sink lines.  These comparisons are 

shown in Table 2.1 and Table 2.2. ' ' 
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Model of Vortex Rings 
Plus Central 

Model of Vortex Ri ngs Source/Sink Line 

Errors in % Errors in % 
No. r ^"/"^Ranklne u/U of Free Stream U u/U of Free Stream U 

1 0.7 1.02329 1 .00061 -2.268 .02204 -0.125 
2 0.8 1.02268 1 .02280 0.012 .02405 0.136 
3 0.9 1.02201 1.02229 0.028 .02339 0.136 
4 1 .0 1.02131 1.02158 0.027 .02267 0.136 
5 1 .1 1.02057 1.02083 0.026 .02190 0.133 
6 1 .2 1.01981 1.02006 0.025 .02112 0.131 
7 1.3 1.01903 1 .01927 0.024 .02032 0.129 
8 1.4 1.01825 1 .01848 0.023 .01950 0.125 
9 1.5 1.01747 1 .01769 0.022 .01869 0.122 

10 1.6 1.01670 1 .01690 , 0.020 .01787 0.117 
11 1 .7 1.01593 1 .01613 0.020 .01707 0.114 
12 1.8 1.01518 1.01537 0.019 .01629 0.111 
13 1.9 1.01445 1 .01463 0.018 .01552 0.107 
14 2.0 1.01375 1 .01391 0.016 .01477 0.102 

Table 2.1  Comparison of field point velocities (at x = 0, r as specified) 
of two models of axisymraetric bodies with the exact solution of 
the Rankine ovoid of slenderness ratio 1:5 and half thickness 
0.62.  Each model has 48 rings. 
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1 Model of Vortex Rings 
Plus Central 

Model of Vortex Ri ngs Source /Sink Line 

Errors in % Errors in % 
No. r ^"/"^Rankine u/U of Free Stream U u/U of Free Stream U 

1 0.9 1 .12147 .11927 -0.220 .12486 0.339 
2 0.95 1.11563 .11642 0.079 .11964 0.401 
3 1 .0 1.10996 .11076 0.080 .11392 0.396 
4 1 .1 1.09922 .09995 0.073 .10305 0.383 
5 1 .2 1.08932 .08999 0.067 .09299 0.367 
6 1.3 1.08031 .08091 0.060 .08379 0.348 
7 l.il 1.07215 .07269 0.054 .07545 0.330 
8 1.5 1.06483 .06532 0.049 .06794 0.311 
9 1.6 1.05827 .05871 0.044 .06120 0.293 

10 1 .7 1.05243 .05283 0.040 .05517 0.274 
11 1 .8 1.04723 .04758 0.035 .04979 0.256 
12 1.9 1 .04260 .04292 0.032 .04500 0.240 
13 2.0 1.03849 .03878 0.029 .04072 0.223 

Table 2.2 Comparison of field point velocities (at x = 0, r as specified) 
of two models of axisymmetric bodies with the exact solution of 
the Ranklne ovoid of slenderness ratio 1:2.22 and half thickness 
0.83-  Each model has 48 rings. 
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CHAPTER 3 

PROPELLER BLADE DESIGN WITH HUB EFFECT 

3.1  The Mixed Design and Analysis Problem 

The task is to design the mean line shape of a propeller blade when 

the load distribution, the advance coefficient J, and the circumferential 

mean effective wake are given.  The choice of other propeller parameters 

such as number of blades, blades rank and skew, section thickness ratio, ' 

and chord length ratio are assumed to be determined by other methods 

[Eckhardt and Morgan, 1955; Morgan and Wrench, 1965; and Brockett et al., 

1981] 

The geometry of the hub, including the fairwater, is assumed to be 

given as well.  The afterbody of the hub is assumed to be prescribed as a 

cubic function. The traditional hub with blunt end is not adopted in this 

thesis since such a configuration would result in flow separation, which is 

not considered in the present study.  Another modification of the hub is 

that the forebody of the hub is a closed body and also has the shape of a 

cubic function.  In order to model upstream flow conditions, the influence 

of the artificial forebody will be Investigated later on. 

The interference between the blades and hub is anticipated to be 

strong, especially near the intersection points.  The trailing vortex 

sheets shed from the blades also interact with the hub.  The task is to 

account for these interferences in the design of the blade shape. 
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The source/vortex lattices are distributed on the blade mean surface 

[Greeley and Kerwin, 1982].  As for the hub, the vortex lattices are 

distributed over the hub surface. 

The procedure is to first assume a blade geometry with source and 

vortex lattices of prescribed strengths on its mean surface.  This is an 

initial guess of the blade shape.  It may not fulfill the boundary 

conditions on the blade surface, on the trailing vortex sheets, or on the 

hub surface.  The objective of the design procedure is to align the blade 

shape so that all the boundary conditions are fulfilled.  This procedure 

will include the determination of the unknown hub surface vortices.  Thus, 

this is a mixed design and analysis problem. 

3.2 Basic Assumptions • 

The propeller runs in an unbound, inviscid, and incompressible fluid 

with constant advance coefficient J (= V^/nD), where Vg is the ship speed, 

n is the number of revolutions per unit time, and D is the propeller 

diameter.  There is no free surface — no solid boundary except the hub. 

The hub is an axisymmetric football-like body with a forebody, an 

afterbody, and a parallel midbody where K blades are located symmetrically. 

The inflow is assumed to be symmetrical about the rotation axis and to 

be steady with respect to a coordinate rotating with the propeller. 

The flow is irrotational everywhere except in the trailing vortex 

sheet, or tip and hub vortex tube.  The trailing vortex sheet is assumed to 

be thin, and the tip and hub vortex tube is assumed to be small in diameter. 

The blades are assumed to be thin and operate at a small angle of 

attack. " 
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3.3 The Coordinates 

Two coordinate systems (Figure 3.1) will be adapted in this thesis. 

One is a Cartesian coordinate system with x-axis coincident with the 

rotation axis, pointing in the downstream direction; the y-axis points 

upward and coincides with one of the K blades (called the key blade 

hereafter) at the middle chord of the root section. Vectors i, j, and k 

are unit vectors corresponding to the x-, y-, and z-axes.  The other 

coordinate system is a cylindrical coordinate system:  x, r, and 6 with 

X-axis coincident with the x-axis of the Cartesian system,  e is measured 

from the positive y-axis toward the positive z-axis.  r is the radial 

distance from the origin in the y-z plane. 

The propeller is rotating opposite to the e direction at constant 

angular velocity u or -wi, in vector notation.  Both coordinate systems are 

rotating with the propeller so that the flow is steady in those systems. 

3.^  Field Equations 

Because of the assumption of inviscid, irrotational, and 

incompressible flow outside the blade, hub, and vortex sheet and vortex 

tube, the governing equation is the Laplace equation 

V'4> = 0 (3.1) 

It is known that the solutions to this equation and their spatial 

derivatives are finite and continuous at all points, except possibly at 

some points on the boundary where a singularity of some kind — for 
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^ 

Figure 3.1 Coordinates 

example, an abrupt change of the tangential velocity at the boundary — may 

exist (see Batchelor, p. 101). 

3.5 Boundary Conditions 

(a) The normal velocities on the blades and hub should vanish in the blade 

fixed coordinate system. ,  . ■ ..  , 

(b) The flow is finite at the blade trailing edge (Kutta condition). 
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(c) The trailing vortex sheets should be force-free and coincident with 

the local flow streamlines. 

(d) Circulation should be conserved.       '' 

(e) The perturbation velocity must vanish at infinity. 

3.6 The Solution Algorithm 

The algorithm for solving this mixed design and analysis problem is to 

proceed with the design and analysis alternatively. 

Vortex lattices and source lattices are distributed over the blade 

camber surface.  Vortices are responsible for the lifting force while 

sources represent the blade thickness from linear theory.  The trailing 

vortices shed from the blade trailing edge are paneled as vortex lattices 

which should obey Kelvin's circulation conservation theory. 

Since the hub is a non-lifting element, it is represented by a 

distribution of dipoles which ends at the hub apex.  The hub surface is 

paneled as quadrilateral elements for most of the hub except the place 

right next to the hub apex where triangular elements are used.  Each panel 

is given a constant dipole sheet with unknown strength which is to be , 

determined later.  Mathematically, a constant dipole sheet is equivalent to 

constant vortex segments along the sheet boundary [Hess, 1972].  So, again 

the hub surface is paneled as vortex lattices. 

The flow diagram in Figure 3.2 is for determination of the blade shape 

while a hub analysis is embedded in it.        , . ■ 
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Figure 3.2 Flow Diagram of Blade Shape Design with Hub Effects 
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3-7 Details of the Method of Solution 

3.7.1  Blade Panels       , • 

The blades are represented by camber surfaces which are discretized as 

spanwise and chordwise vortex lattices and spanwise source lattices. The 

details of the arrangement of these singularities is presented in Greeley 

and Kerwin [1982] and will not be repeated here.  The only change is the 

location of spanwise elements.  The endpoints of the discrete vortices are 

located at radii 

(R - ro)(4m - H) 
 i4M-^l  - -^H'   "^=^'2 M.I (3.2) 

This divides the radial interval from the hub r^^ to tip R into M equal 

intervals.  The first spanwise element has one end at the hub surface while 

the last spanwise element has its far end inset one quarter element from 

the tip.  The first chordwise element will then have its end on the hub 

surface and will coincide with the hub element which will be defined later. 

3.7.2 Trailing Vortex Panels 

The wakes are modeled the same way as those modeled by Greeley and 

Kerwin [1982], except the inner radius of the so-called transition wake 

should be exactly the same as the hub geometry.  The hub geometry will be 

modeled as a cubic function (see the next section), as will the transition 

wake. 
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Usually the transition wake extends further downstream than the hub, 

which means that the hub boundary disappears before the transition wake 

terminates. Thus, transition wakes are undefined beyond the hub. This 

will be compensated by simply assuming a parameter x = x^ (less than x^, 

the hub apex — see the next section on hub geometry), beyond which the 

first transition wake has a constant radius, like that at x = x^. This 

transition wake maximum radius replaces the radius of the hub vortex at the 

end of the transition wake in Greeley and Kerwin [1982]. 

The so-called ultimate wakes include the hub vortex and K tip 

vortices. The hub vortex originates at the end of the transition 

vTake and extends downstream to a distant point on the x-axis, as in 

Greeley and Kerwin [1982]. 

The change in this new wake model will make the wake more realistic. 

3.7.3 Hub Geometry 

The hub, in this thesis, is the general term for the assembly of the 

propeller shaft, hub, and fairing. The geometry of the hub is simplified 

and represented by the following equations 

r^(x) = a(x - b)^ + r^^ 

where 

(i) a =       b = x^     .   Xj < x < x^ 
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(ii) a = 0  and  '"h " ""H " constant    x^ ^ x < x,       (3-3) 

(iii) a = -      b = X,        x, < x < x^ 
(x^ - X3) 

The geometry of the hub defined by these equations is controlled by 

five parameters, namely, r^,   x^, x^, x^,   and x^.  rj^ is the hub maximum 

radius.  The interval between x = x^ and x = x^ has constant radius equal 

to rj^.  The interval between x = x^ and x = x^ is a cubic function which is 

best fit with real hub fairing.  The interval between x = x and x = x is 
12 

an artificial forebody to make this hub a closed body.  The length of this 

nose will be proved numerically in one example to have little effect on the 

blade shape. 

3.7.^ Hub Panels 

Though there are many ways to panel the hub surface, the hub panels 

should be compatible with their neighbors, namely, the blades and the 

wakes. The natural way is to let the hub panel boundaries follow the blade 

and wake panel boundaries where they meet together.  In this way, a set of 

hub helical vortex lattices is defined. As for the portion between the hub 

nose and the blades leading edge, the hub helical vortex may follow a 

helical line along the hub surface with a pitch angle exactly the same as 

that of the blade section. 

There will be another set of vortices on the hub called vortex rings, 

although they are really polygons due to discretization.  The x-position of 

these vortex rings will be the same as that of the end points of the first 
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blade spanwise elements in the blade region, and will be the same as that 

of the end points of the first transition wake in the wake region.  As for 

the region between the hub nose and the blade leading edges, the vortex 

rings are equally spaced.  There are NN1 vortex rings from x = x  (the end 

of the forebody) to the blade leading edge. 

Thus these two sets of vortex lattices make up the panels for the hub. 

The number of panels is the number of unknowns which are going to be solved 

if we have the same number of equations. Before doing so, the reduction of 

unknowns from symmetry should be pointed out. 

The inflow is assumed to be axisymmetric; the hub geometry is 

axisymmetric too.  The blades and their wakes are not axisymmetric, but 

they are similar to each other.  So, they are periodic in space in a blade- 

fixed coordinate system.  Once 1/K portions of the hub panels are solved, 

all the hub singularities are known from periodicity.  Thus, the unknowns 

are reduced K times, where K is the number of blades. 

From the above argument and following the concept of key blade, a "key 

hub" is defined as the smallest portion of the hub which contains all the 

unknowns that need to be solved in the axisymmetric flow.  From this 

definition, the key hub is not unique.  However, the one that will be 

chosen in this thesis is the following.  The key hub is, roughly speaking, 

the portion of the hub between the key blade and the second blade and 

between the first wake and the second wake. 

The first hub helical vortex coincides with the key blade chordwise 

vortices and coincides with the key blade trailing vortices.  From the key 

blade leading edge toward the hub nose, this first helical vortex follows 

the same pitch angle as that of the key blade root section. Once the first 
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helical vortex is generated, the rest of the helical vortices are parallel 

to the first one with equal angle spacing between each other. 

Suppose there are NH helical vortices in the key hub.  Then the angle 

between any two adjacent helical vortex elements will be 

Ae = 
2-Tr 
K«NH 

(3.4) 

Figure 3.3 shows an arrangement of NH = ^4 and K = 5.  Notice that the 

M = 5 helical vortex is on the second blade, so it has identical strength 

as the one at M = 1 on the key blade from periodicity. 

key hub 

fhe 2^blade 

ey blade 

Figure 3.3 Cross Section of a Key Hub 

Figure 3.3 shows a plane perpendicular to the x-axis, so one vortex 

ring is also seen here as a portion of a polygon with 20 sides. 

The first ring vortex (N = 1) is the one closest to the hub nose; the 

last vortex ring (N = NR) is the one closest to the hub apex.  The total 

number of vortex rings NR is equal to the sum of NN1, NN, and NN2. 

NR = NN1 + NN + NN2 (3.5; 
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NN1 is the number of vortex rings between the hub nose and the blade 

leading edge.  As mentioned before, these NN1 vortex rings are equally 

spaced in x between the hub nose and the blade leading edge. NN is the 

number of rings between the blade leading edge and the blade trailing edge. 

NN, by definition, equals the number of spanwise vortices on the key blade. 

NN2 is the number of vortex rings between the blade trailing edge and the 

hub apex.  This number is dynamically adjusted with wake alignment.  It 

will be explained in the wake alignment section. 

The total number of panels is NT = NR'NH.  Each panel consists of two 

helical vortex elements and two vortex ring elements. The control points 

upon which the normal velocity vanishes are chosen as the centroid of each 

panel. 

The normal vector of each panel is constructed by forming the cross- 

product of the two diagonal vectors of the panel. The normal vector is 

defined as positive if it points into the hub. 

The sense of positive vortex panels is counterclockwise when looking 

in the positive normal vector direction.  The sense of helical vortices is 

positive if it points downstream.  The sense of vortex rings is positive if 

it points in the positive e direction.     .  ■ 

A typical I^"^ hub vortex panel, a quadrilateral element, is shown in 

Figure 3.^a. 

Notice that the relationship between I and N and M is 

I = (M - 1)NR + N (3.6) 

The normal vector of the 1^*^ panel is defined as 
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panel vortex 
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helical vortex r^(N, M) 
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'3       rr(N+I.M) 
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^helical vortex  T^CN, M+l) 

centroid (where normal vector  n^ 
points into the paper) 

The I**'panel 

Figure 3.4a A Typical Quadrilateral Panel on the Hub 

A X B 

|A X B| 
(3.7) 

where A and B are diagonal vectors of the panel I. The panel area is 

AJ = 2 |A X B 

The (N,M + 1) helical vortex will have the same strength as that of (N,1) 

if M equals NH.  From the definition of vortex panel, vortex ring, and 

helical vortex, the (N,M) vortex ring and the (N,M+1) helical vortex are 

equal in strength to the I^*^ vortex panel, while the (N.M) helical vortex 

and the (N+1,M) vortex ring are equal in strength to the negative value of 

the I^'^ vortex panel. 
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-th A typical I^" hub vortex panel right next to the hub apex is a 

triangle as shown in Figure 3.4b. 

(NR.M) 

the I th 

vorttx ponel 

(NR.M) 
vortex ring 

^ (NR, M) helical vortex 

hub apex 

(NR, M + l) helical vortex 

(NR, M+l) 

Figure 3.4b A Typical Triangular Panel on the Hub 

All the properties of the quadrilateral panel apply for the triangular 

panel also,  A triangular panel can be treated as a quadrilateral panel 

with one vortex ring with zero length. 

3.7.5 The Solution for Hub Singularities 

The boundary conditions on hub control points in vector form are 

(V • fi)^ = 0    i = 1 ,2 NT (3.8) 

The total velocity vector V is 

V = Vj - Vg . V^^ * VH (3.9) 
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where Vj is the inflow velocity, and Vg, V^, and Vp^ are the velocities 

induced by blade singularities, trailing vortex wakes, and hub 

singularities respectively, 

Vg and V^ can be calculated if the blade singularities and wake 

geometries are known, so that 

[V^ • n = - (Vj + Vg + V^) . n]^    i = 1,2,...,NT (3.10) 

V]^.. Vp^ at the i^ control point, is the summation of all the 

velocities induced by hub singularities, i.e.. 

NT 
VH. = 1    VijFj . (3.11) 

where V^- is the velocity induced at the i  control point by the j  panel 

(and all panels equivalent to the j  panel in the rest of the hub) of unit 

strength singularity, and r. is the unknown strength of the J^'^ panel 

singularity.  At this stage, some readers may be interested in looking at 

the Appendix to see the power of reducing the number of unknowns by the 

concept of key hub. 

Substituting (3.11) into (3-10) and carry out the inner product, we 

obtain simultaneous linear algebraic equations for r^. 

NT 
I (V^T • ni)r. = [- (Vj + Vg + V^) • n].     i = 1,2,...,NT (3.12) 

j = 1 

or 
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A r = B (3.13) 

in matrix form, . 

A is an NT by NT matrix; r and B are vectors of NT elements. 

Matrix A's element a^. and vector B's element b^  are defined as 

^Ij = ^ij • ^i iS.U) 

b. = [- (Vj + Vg + v„) . R]. (3.15) 

In order to save computer time, but without losing any accuracy in 

calculating b^^, the lattices on the key blade and the second blade (they 

are the boundaries of the key hub) have fine grids while the other blades 

may have coarse grids. ■  ; 

Once the hub panel strengths are solved, the decomposition of these 

panel strengths into hub helical vortices and hub ring vortices is 

straightforward.  Taking the 1  panel and its four adjacent panels, 

Figure 3.5  Decomposition of Panel Strengths 
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namely, the (I - 1)th, (i + i)th^ (j _ NR)th^ ^nd (I + NR)^^ panels 

(Figure 3.5), for example, the helical vortices r^(N,M) and Fj^CN.M + 1) and 

the vortex rings rj,(N,M) and r^(N + 1 ,M) are 

r^CN.M) = ri.NR - Ti 

r^CN.M + 1) = Ti - Ti^j^R (3.16) 

rp(N,M) = r^ - r^.j 

r^(N + i,M) = r^+j - r^ 

where i = (M - 1 )NR + N 

■ ''.      ■ '' . . ■ ■ ■ 

3.7.6 Wake Alignment and Blade Alignment 

The wake alignment and blade alignment will follow the same scheme as 

in Greeley and Kerwin [1982] except that the induced velocities on wake 

control points or on blade control points will be added contributions from 

the hub helical/ring vortex system.    ,' ' 

3.7.7 Force Calculation 

The blade forces are computed in the same way as in Greeley and Kerwin 

[1982], i.e., by determining the forces acting on the line singularities 

representing the key blade by applying the Kutta-Joukowsky law for the 

vortices and Lagally theory for the sources. 

The force calculation on the hub will be done by integrating the 

pressure at the hub control points instead of on the singularities.  The 

advantage of doing so is to save computer time.  Because the velocities 
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induced on the hub control points by blade and wake singularities have 

already been found in solving the hub boundary value problem, the 

velocities induced by the hub panels with unit strength have also already 

been done at the same time. The former plus the latter, times the hub 

panel strength, plus inflow will be the total velocity at the control 

points except for the vortex sheet jumping velocities which will be 

introduced next.    '   " 

The concentrated vortex element (vortex lattice) can be regarded as a 

lumped vortex sheet.  The influence function of the vortex lattice is 

easier to calculate than that of the vortex sheet. This is the reason to 

choose the vortex lattice instead of the vortex sheet.  The most important 

thing is that it does not give rise to errors, as far as the normal 

velocity is concerned, in calculating to solve the boundary value problem. 

The situation is changed when the tangential velocity is considered. 

The vortex sheet in a panel produces a tangential velocity equal to one 

half of its strength at its control point, while the vortex lattices along 

that panel produce zero tangential velocity at that control point and lead 

to the wrong result. 

The solution is to redistribute the concentrated vortex lattices into 

a vortex sheet [Kim and Kobayashi, 198^1].  A typical quadrilateral panel is 

shown in Figure 3.^a with two vortex rings rj.(N,M) and T^in  + 1 ,M) and two 

helical vortex lattices r^(N,M) and r^(N,M +1).  The vortex sheet Y(l) in 

the I  panel has two components -- T^(I) comes from averaged vortex rings 

and \(1) comes from averaged helical vortices.  Notice that the two vortex 

rings are parallel to each other while the helical vortices may have an 

arbitrary angle to each other. .  " 
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T(I) = Y^(I) + Y^CI) 

r^(N,M) + r^(N + 1,M) 

'r(I)=— 2(A1,)   ... . .  . ^Vr '-  V  ■■    ..  (3.17) 

r^CN.M) + r^(N,M + 1) 

^h(^) - KiT^^ 

For a triangular panel, r^(N + 1 ,M) and Al^ are both zero in the above 

equations. ..     : 

The jump velocity is Y/2 with a direction normal to Y(I) and 

tangential to the panel. 

The pressure on a body rotating at constant angular velocity, -wi, in 

a uniform onset flow with only an axial component can be expressed as [Kim 

and Kobayashi, 1984]        - .   - 

p = - I pCV-V - V^ - r'o)"] + p„     ..- (3.18) 

where 

V = total velocity = v„i + rueo + V„ A op 

and p„ is the pressure far upstream. V is the perturbation velocity due 

to the propeller blades, wakes, and hub. 

Vp = Vg . V^ + VH ■  (3.19) 
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3.7.8 Termination of Design Iteration Procedure 

If the new blade shape, namely pitch and camber distribution, is 

nearly the same as the old one, then the design of the blade shape is done. 

Otherwise this new blade shape will be the input data for another run. 

3.8 Design Example 

A design example will be given in the following section. 

3.8.1  Input Data of Blades 

This is a five-bladed propeller with a hub ratio of 0.3 running in an 

axial shear flow with advance coefficient J = V„/nD = I.OI6, where V„ is 

the ship speed.  The blade geometry (except the pitch and camber which will 

be determined) as well as inflow information is given in Table 3.1. 

Chord/ Thickness/ Inflow/ 
Radius Rake/Diameter Skew Angle Diameter Diameter Ship Velocity 

r/R >^s/^ in Degrees C/D t/D Vx/Vs 

0.3000 0.0060 1 .420 0.1868 0.0454 0.9575 
0.3^438 -0.0070 -2.340 0.2142 0.0415 0.9455 
0.3875 -0.0200 -6.100 0.2416 0.0366 0.9335 
O.J4750 -0.03^0 -9.530 0.2961 0.0285 0.9159 
0.5625 -0.03^0     ■ -8.980 0.3473 0.0230 0.9021 
0.6500 -0.0220 -5.850 0.3875 0.0194 0.8954 
0.7375 -0.0035 -0.940 0.4108 0.0171 0.8899 
0.8250 0.0240 6.650 0.4020 0.0148 0.8831 
0.9125 0.0480 14.620 0.3577 0.0127 ■-     0.8693 
0.9563 0.0620     ". 19.620 0.2956 0.0103 0.8642 
1.0000 0.0760 24.620 0.0700 0.0079 0.8591 

Table 3.1  Blade Geometry for the Design Example 
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The load is given in the form of a radial curculation distribution 

r^j(r) = 2irRVg ^ a-^  sin(p.l) 
., - • .    1=1 

(3.20) 

where L is the number of series coefficients retained, 5 for this case, and 

P is the transformed radial coordinate 

f = cos 
1 - r^ - 2r 

1 - r. 
0 < r < TT (3.21) 

and 

^1 = 0.036716 

-0.004519 

-0.004184 

0.000125 

0.000031 

A plot of circulation distribution is shown in Figure 3.6. 

3.8.2 Hub Geometry and Hub Modeling 

Real hub geometry, as well as a best fit hub geometry with r„ = 0.3, 

X = 0.012, and x = 0.761, and the equation (3.3) are given in Table 3.2. 
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^1 

•|  -0.28il -0.185 -0.086 0.012 0.111 0.210 0.309 0.407 0.556 0.761 

J   0.3   0.3   0.3  0.3  0.299 0.298 0.296 0.247 0.185 — 

^  0.3   0.3   0.3  0.3  0.299 0.294 0.281 0.256 0.185 0.0 

Table 3.2 Real Hub Geometry r/R and Fitted Hub Geometry r'/R 

As for the other two hub parameters, x^ and x^ are arbitrary at this 

stage and their influence on blade shape design will be investigated. That 

is, three different sets of x^ and x^ are chosen to represent three 

different lengths of hub, and the blade shape will be designed three times, 

each design corresponding to one hub. Those hubs will be called short hub, 

medium hub, and long hub. Their x^ and x^ values, and a hub fatness to hub 

total length ratio are shown in Table 3.3. 

Short Hub    Medium Hub    Long Hub 

Fatness/Length 

Table 3-3 x^ and x^ Values of Three Hubs 

3.8.3 Inflow Modification 

Because the hub is modeled as a closed body, the flow will be 

accelerated by it in the mid part of the hub.  The nose (x value) is 

arbitrarily chosen and the flow depends on the body shape.  This results in 

-0.60 -1 .0 -1.5 
-0.284 -0.284 -0.3 
1:4.54 1:5.87 1:7.54 



- 48 - 
•■ ■    •     ■ 

an arbitrary flow pattern which deviates from the real inflow, and a 

Xj-dependency blade shape is anticipated. 

The solution to this is to reduce the inflow in such a way that after 

being accelerated by the hub, the flow at the propeller plane will recover 

the given inflow approximately.  The propeller is designed in an 

axisymmetric shear flow, although potential flow is assumed.  If the inflow 

is uniform (a special case of an axisymmetric flow), the flow field around 

an axisymmetric body has already been solved in Chapter 2.  As for an 

axisymmetric shear flow, three-dimensional Navier-Stokes equations have to 

be solved, which is beyond the scope of this thesis. 

In order to solve the problem, an approximate method is adapted as 

follows.  First, solve the problem of a bare hub (dummy hub) in a uniform 

flow by the method of Chapter 2,  Then, calculate the ratio of the 

disturbance velocities at the propeller plane (x = 0) to uniform flow. 

Finally, deduct an amount of velocity equal to the product of the above 

ratio and the given inflow from the given inflow. Table 3.H  shows the 

given inflow as well as the modified inflow for three dummy hubs introduced 

in 3-8.2 by these approximate methods.  Recall that in Chapter 2 two models 

are introduced; one is an axisymmetric body represented by vortex rings, 

and the other one is an axisymmetric body represented by vortex rings plus 

a central source line. Because the former predicts the field point 

velocities more accurately than the latter, the former is adapted here for 

calculating the modified inflow. 
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Modified Inflow/Vs 
r/R Given Inflow/V^ s Short Hub Medium Hub Long Hub 

0.3 0.9575 0.8503 0.8659 0.8774 
0.3438 0.9455 0.8505 0.8666 0.8741 
0.3875 0.9335 0.8458 \    0.8610 0.8683 
0.i475 0.9159 0.8448 0,8566 0.8638 
0.5625 0.9021 0.8462 0.8545 0.8607 
0.65 0.8954 0.8517 0.8571 0.8621 
0.7375 0.8899 0.8557 0.8591 0.8629 
0.8250 0.8831 0.8563 0.8582 0.8610 
0.9125 0.8693 0.8482 0.8492 0.8512 
0.9563 0.8642 0.8453 0.8460 0.8477 
1.0 0.8591 0.8423 0.8427 0.8441 

Table 3.4 Given Inflow and Modified Infl ow 

3.8.4 The Effect of Hub-Nose Length 

The pitch and camber distribution of three designs corresponding to 

three different lengths of hub nose are shown in Table 3.5.  The results 

are good; the difference between the medium hub case and the long hub case 

is quite small (about 2%  for camber and 0.6? for pitch) while the 

difference between the short hub case and either the medium hub case or the 

long hub case is about 19? for camber and 5%  for pitch.  Too short a nose 

may make the blade shape depend on hub-nose length, while a reasonably long 

(Xj i  -1.0) hub-nose length can result in a unique blade shape. 

The K^, KQ, and n values and H^.^ (the axial force on the hub) are 

summarized in Table 3.6 for these three designs. H^-^   is the drag on the 

hub nondimensionalized with respect to pn^D", the same as for Krj,.  It is 

observed that Hj^ is also x^-independent if x^ is large enough.  Hj,-p is 

about 2%  of K^ for this design case.  Two-dimensional plots of the 
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Short Hub (Xj   =   -0.6) Medium Hub (x^   =   -1.0) Long Hub (x^   =   -1,5) 

r/R„ P/D fo/C P/D f/C P/D f/C 

0.3 0.8803 -0.0410 0,9218 -0.0497 0.9277 -0.0508 
0.3^38 1.1128 0.0041 1 .1246 0,0046 1.123^1 0.0052 
0.3875 1.2997 0.0260 1 .2923 0,0303 1.2865 0,0316 
0.4750 1,4970 0,0330 1,4886 0,0357 1.4825 0,0367 
0.5625 1.5428 0.0409 1.5415 0.0415 1.5386 0.0421 
0.6500 1.5581 0.0404 1.5596 0,0404 1.5595 0,0406 
0.7375 1.4584 0,0345 1,4501 0,03^3 1.4607 0,03^1 
0.8250 1.2987 0,0325 1,2988 0,0324 1.2989 0.0323 
0.9125 1.1086 0,0251 1 .1096 0,0250 1.1102 0.0249 
0.9563 0.9275 0,0245 0.9283 0.0243 0.9290 0.0241 
1 .0 0.6418 0,0288 0,6412 0.0283 0.6414 0.0279 

Table 3.5 Comparison of pitch and camber distribution among three cases of 
hub-nose length.  NH = 4 and NNl = 8 for all three designs. 

Short Hub    Medium Hub    Long Hub 

Krn 0.351 0.352 0.352 
KQ 0.0699 0.0700 0.0700 
n 0.813 0.813 0.813 
"KT -0.01539 -0,00796 -0.00743 

Table 3.6 Force Coefficients for Three Designs 

discretized key hub and key blade are shown in Figure 3.7, Figure 3,8, and 

Figure 3,9 for the cases of short hub, medium hub, and long hub 

respectively.  In the long hub case, the plot is for NH = 5, which is for 

studying the convergence of blade shape due to NH and will be discussed in 

the next section. 
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FIG. 3.9 DISCRITIZED KEY BLADE AND LONG KEY HUB 



3.8.5 The Influence of Number of Helical Vortices on Blade Shape and Force 

If the case of the long hub is regarded as a convergent result for 

changing the hub-nose length while NH is fixed (equals 4), the sensitivity 

of NH to blade shape is next to be studied while the hub length is fixed 

for the long hub. 

In additon to NH = H,   two cases of NH = 3 and NH = 5 are studied.  The 

results of pitch and camber distribution as well as the force coefficients 

are shown in Table 3.7. 

m I =  3 M I  =   4 nv !  =  5 

r/R P/D f/C P/D f/C P/D f/C 

0.3 0.9332 -0.0500 0.9277 -0.0508 0.9241 -0.0519 
0.3^38 1 .1272 0.0059 1 .1234 0.0052 1 .1210 0.0049 
0.3875 1 .2887 0.0320 1 .2865 0.0316 1 .2852 0.0316 
0.ii750 1 .i4830 0.0368 1 .4825 0.0367 1 .4827 0.0368 
0.5625 1.5388 0.0421 1 .5386 0.0421 1.5388 0.0422 
0.6500 1.5603 0.0406 1.5595 0.0406 1 .5602 0.0406 
0.7375 1 .n6^^ 0.0340 1 .4607 0.0341 1 .4613 0.0341 
0.8250 1 .2988 0.0322 1.2989 0.0323 1.2993 0.0323 
0.9125 1 .1105 0.0249 1.1102 0.0249 1.1107 0.0249 
0.9563 0.9292 0.0240 0.9290 0.0241 0.9294 0.0241 
1 .0 0.6413 0.0278 0.6414 0.0279 0.6413 0.0279 

KT-I 0. 352 0. 352 0. 352 

KQ 0. 700 0. 700 0. 701 

n 0. 813 0. 813 0. 813 

"KT -0, 00705 -0. 00743 -0. 00788 

Table 3-7 The Sensitivities of NH Values to Blade Shape and 
Force Coefficients 
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3.8.6 Summary of Results of Design Example 

The case of a long hub with NH = 5 is regarded as the final result for 

the design example. The blade shape as well as the a = 0.8 mean line with 

the same camber ratio are plotted at ten radial sections in Figure 3.10. 

Except for the first two sections, the blade shape is very close to a = 0.8 

mean line. - 

The discretized key hub, key blade, and its transition wakes and 

ultimate wakes are shown in Figure 3.11.  The blowup of the three- 

dimensional views of key hub, key blade, and its transition wakes are shown 

in Figure 3.12(a). All five discretized blades are shown in Figure 

3.12(b). 

The strengths of the hub vortex sheet redistributed from the 

discretized vortex rings are plotted in Figures 3.13(a) and 3.13(b).  The 

symbols numbered from 1 to 5 in Figure 3.13(a) represent the strengths 

corresponding to the vortex ring segments in Figure 3.9.  It is seen that 

the strengths of vortex ring segments are almost constant for the rings far 

ahead of the blade leading edges (about x = - 0.2 R).  This suggests that 

for those lattices far away from the blade leading edges a simple vortex 

ring is sufficient to represent the hub.  A reduction in the number of 

unknowns for those lattices has a factor of NH.  A solid line in Figure 

3.13(a) indicates vortex sheet strengths of the dummy hub in a uniform 

stream which equals the ship speed V„. 

The Jump velocities raised by these vortex sheets is just one half of 

the vortex sheet strengths. The negative signs mean these jump velocities 

point downstream because of the definition of the positive sense of the 
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FIG. 3.12Ca5 KEY HUB, KEY BLADE AND ITS TRANSITION WAKES 

FIG. 3.12Cb5 DISCRETIZED BLADES 
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vortex rings.  The acceleration of axial velocities are as high as ship 

speed in some regions between blades. 

3.8.7 Comparison between Design with Hub Effects and Design without Hub 
Effects 

It is interesting to investigate the hub effects by comparing the 

design with the hub case with the design without the hub case.  Figure 3.1M 

shows the section shape of mean lines for both designs.  The hub effects 

are important at sections close to the hub.  The hub effects are supplying 

a solid boundary to lifting surfaces (blades) which attach to it.  Thus, 

they will increase the lift force if the blades remain the same shape, or 

reduce the camber and/or angle of attack (pitch) if the required lift 

(load) is fixed. The pitch and camber distribution in the radial direction 

are also replotted in Figure 3.15 and Figure 3.16 for both cases, with the 

hub and without the hub.  "        "     - -■ 
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CHAPTER 4 

PROPELLER ANALYSIS WITH HUB EFFECTS 

4.1 The Relationship between Analysis and Design 

For the design problem, the load is given, while the blade shape is to 

be determined.  For the analysis problem the situation is opposite, that 

is, the blade shape is given while the load is to be determined.  As 

mentioned before, a blade shape design with hub effects is a mixed design 

and analysis problem, namely, design the blade shape and analyze the hub. 

Because the blade load problem is a pure analysis problem, both the 

singularities on the blades and on the hub need to be solved. 

It is immediately found that the hub analysis part is common to both 

problems.  So, the concept of solving the blade analysis problem with hub 

effects may be that a separate hub analysis part joins the blade analysis 

part which has been done by Greeley and Kerwin [1982].  Iterative 

procedures are needed. .-..'' 

4.2 The Analysis Algorithm 

4.2.1  Two Methods of Solving the Analysis Problem 

There are two ways to solve the blades-hub interference problem.  One 

is to solve all the singularities (blades and hub) once and for all.  The 

other way is to do it iteratively as mentioned above. 
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The first method is straightforward.  First, establish a set of 

simultaneous linear equations with a big influence matrix, including the 

influence between blade-blade, blade-hub, and hub-hub.  Then solve these 

equations. 

The second method is to first solve the blade singularities by totally 

ignoring the hub as in Greeley and Kerwin [1982], then solve the hub 

singularities by assuming the blade singularities remain the same.  The 

next step is to solve for the blade again assuming the hub remains the 

same.  This time, the hub influence on the blade can be calculated and 

certainly will not be ignored anymore.  So, the procedure is to analyze the 

blade and hub iteratively until the strengths of all the singularities 

converge. . 

^.2.2 Comparison of the Two Methods 

If the number of unknowns on the key hub and on the key blade has the 

same order of magnitude, N say, then the total operation has about 8 N' for 

the first method, less than 8 N' for the second method if the number of 

iterations is less than four.  The storage of the matrix of the first 

method is about ^N% but only about N^ for the second method. 

After the design problem has been solved, the advantage of using the 

second method is obvious. This method will be adopted in this thesis. 

4.2.3 The Iterative Method 

The basic assumptions, the field equations, and the boundary 

conditions are all the same as those for the design problem.  The 
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panelization for the blades, wakes, and hub are also the same as those for 

the design problem.  The flow diagram for analyzing this problem by the 

iterative method is shown in Figure H.^. 

It is seen from this flow diagram that the matrices of influence 

coefficient for both the blades and for the hub will depend on the wake 

geometry. Only after the wakes have been aligned will the wake geometry be 

fixed and these two matrices will remain constant. 

M.3 Two Examples of Analysis 

There will be two examples of propeller analysis with hub effects, as 

well as propeller analysis without hub effects. 

Also, there will be experimental work (see Chapter 5) in order to 

compare with the theoretical predictions. 

Details of the results of the analysis and the comparisons between 

theoretical predictions and experimental results will be given in 

Chapter 6. ' '   '   \, .'''   ■ '    '^  .  '' 
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.. .       CHAPTER 5 

EXPERIMENT 

5.1  Purposes 

There are three goals for testing models in this thesis.  First, there 

is the search for evidence of the circulation conservation law by 

experiment.  Second, there is the comparison of the forces and circulation 

distribution predicted by numerical models with those measured from 

physical models. Third, there is the study of the cause of the hub vortex 

and its structure. 

Circulation is certainly conserved in an inviscid fluid.  But, in a 

real fluid, the energy is dissipated -- the question is:  how fast is it 

dissipating? Is it slow enough that the circulation conservation law can 

still be applied in the domain close to the propeller disk? 

If circulation is conserved or is dissipating very slowly if at all, 

it may provide the opportunity to check the numerical model predictions — 

either the circulation distribution or the forces — with experimental 

data. ■ 

As mentioned before, the hub vortex produces a cavity and low pressure 

at the hub apex, so drag is produced. The cause of the hub vortex is still 

controversial, and the structure of the hub vortex still needs to be 

confirmed as a Rankine vortex. 
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5.2 Propeller Models 

There were two propeller models tested in this thesis. One was a CP 

(controllable pitch) propeller from the DD-963 class destroyer, model 4660 

[Jessup, Boswell, and Nelka, 1977], and the other was a research propeller 

4498.  P4660 has a larger hub ratio (0.3) than P4498 (0.2). P4660 has a 

lower pitch and camber at sections near the root than P4498. The geometry 

of both propellers is tabulated in Table 5.1 and Table 5.2, and the pitch 

and camber distribution are plotted in Figure 5.1 and Figure 5.2. 

5.3 Hub Models ,, 

P4660 has three different fairings with different lengths.  P4498 has 

one fairing.  These fairings are shown in Figure 5.3. 

r/R P/D x^/D Skew C/D f/C to/D 

0.30 1 .165 0.0091 2.985 0.178 0.0000 0.0420 
0.35 1 .296 0.0103 3.481 0.210 0.0050 0.0372 
0.45 1 .480 0.0103 4.810 0.271 0.0209 0.0290 
0.55 1.565 0.0103 6.631 0.327 0.0267 0.0226 
0.65 1.566 0.0103 8.978 0.374 0.0256 0.0178 
0.75 1 .498 0.0103 11.895 0.406 0.0209 0.0146 
0.85 1.381 0.0103 15.410 0.409 0.0151 0.0122 
0.90 1 .306 0.0102 17.403 0.387 0.0122 0.0110 
0.95 1 .222 0.0103 19.557 0.326 0.0094 0.0091 
1 .00 1 .128 0.0102 21.876 0.000 0.0000 0.0000 

Table 5.1  Geometry of Propeller 4650 — design J = I.O38, propeller 
diameter = 1 ft 
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r/R P/D x./D Skew C/D fo/C t/D 

0.20 1.566 0.0 0.0 0.174 0.0402 0.0434 
0.25 1.539 0.0 4.647 0.202 0.0408 0.0396 
0.30 1 .512 0.0 9.293 0.229 0.0407 0.0358 
0.40 1.459 0.0 18.816 0.275 0.0385 0.0294 
0.50 1.386 0.0 27.991 0.312 0.0342 0.02^40 
0.60 1 .296 0.0 36.770 0.337 0.0281 0.0191 
0.70 1.198 0.0 45.453 0.347 0.0230 0.0146 
0.80 1 .096 0.0 54.245 0.334 0.0189 0.0105 
0.90 0.996 0.0 63.102 0.280 0.0159 0.0067 
0.95 0.945 0.0 67.531 0.210 0.0168 0.0048 
1 .00 0.895 0.0 72.000 0.000 0.0001 0.0029 

Table 5.2  Geometry of Propeller 4498 -- design J = 0.889, propeller 
diameter = 1 ft 

5.4 Water Tunnel 

All the tests were carried out in the MIT Marine Hydrodynamics 

Laboratory (MHL) Variable Pressure Water Tunnel.  The tunnel has a square 

test section with four plexiglass viewing windows 44" x 16" x 2".  The 

inside dimension of the test section is 20" x 20" which is large enough for 

a propeller of 12" diameter, with little interference with the wall.  The 

free stream velocity range is from 0 to 30 ft/sec.  A movable propeller 

drive shaft extending from far upstream to the test section can rotate up 

to 2000 rpm.  The impeller speed is manually controlled with an error of 

about 0.5?.  The propeller speed is also manually controlled with an error 

of about 0.25s. 



5.5 Instrumentation "       .. 

5.5.1  Laser Doppler Anemometry Systems ■; 

The LDA system in MHL is a Thermo Systems, Inc. (TSI) 9000 series 

model utilizing a 15 mW He-Ne laser.  The system may operate either in dual 

beam forward scatter mode or dual beam backscatter mode.  It is easy to 

shift from one mode to the other by moving the receiving optics from one 

side of the test section to the other.  The LDA mounts on a carriage which 

can move in three perpendicular directions.  With a Bausch and Lomb 

electronic position measuring system, the laser beam position can be read 

as accurately as 0.0005" using the Accurite II counter of this system. 

The details of the set up of the LDA system as well as its connection 

to the data processing system are shown schematically in Figure 5.4.  This 

system has been continuously improved since Min [1977].  Trial and error 

and the effort of many people have been put in since then. 

The functions of each component in the LDA system are all well 

explained [TSI].  An abstract of the description Is presented below to 

provide an understanding of the system -- this turns out to be crucial to 

having good data. 

• Beam Collimator:  To Insure that the two beams focus and cross at 

the same point.  This is especially necessary in large systems and 

where beam expansion Is used. 

• Rotating Mounts:  There are two rotating mounts so that the 

components between these two mounts can be rotated as a whole. The 

Rotating Mount 9178-2 provides convenient rotation of both the beam 
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polarity and the beamsplitter, which then rotates in the direction 

of measurement.  It has a scale which reads to an accuracy of 0.5°. 

With a homemade level attached, it may read to 0.1'. 

• Polarization Rotator:  Is inside 9178-2.  The light from the laser 

used in LDA is linearly polarized in the vertical direction.  The 

polarization rotator is very crucial in order to make measurements 

in any other direction. 

• Beam Splitter:  Splits the incoming laser beam into two parallel 

beams:  each 25 mm from the entering beam for Model 9115-2.  The two 

beams are of equal intensity (dual beam mode) if the plane of 

polarity of the incoming beam is perpendicular to the plane of the 

two exiting beams. The beam intensity can be split 99.55^ to 0.5^ 

(reference beam mode) with a simple slide adjustment. 

• Frequency Shifter (Bragg Cell, Power Supply, and Mixer): Shifts the 

zero flow signal by a specified frequency so that a reverse flow can 

be distinguished from the forward flow.   ^      ■ ■   . ". 

• Beam Stop: The Bragg cell produces several minor beams in addition 

to the strong diffracted beam to be used. The beam stop is used to 

block off those extra beams. 

• Receiving Assembly: Focuses the collimated light from a collecting 

lens onto the photodetector aperture. 

• Photomultiplier:  Detects the scattered light through a 0.2 mm 

diameter aperture. 

• Beam Spacer:  Reduces the beam spacing from 50 mm to 22 mm 

(Model 9113-22) so that the Beam Expander 9188 can be used. 
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• Beam Expander:  It increases the diameter of the incident laser beam 

entering the focusing lens by a factor of 2.27 (Model 9188),  This 

will decrease the measuring volume diameter by a factor of 2.27, 

decrease the measuring volume length by a factor of 5, and increase 

the slgnal-to-noise ratio (power) by a factor of 5. 

• Transmitting Lens 9118:  Focal length, f, 249.1 mm; half angle, 

K, 5.538°. . . 

• 15 raw He-Ne Laser: X  = 632.8 nra. 

A comparison of measuring volume and number of fringes using no beam 

expander and with the model 9188 beam expander is shown in Table 5.3. 

No Beam Expander    Model 9188 Beam Expander 

Beam Separation Distance, • 
d (mm) 50 22 

Fringe Spacing, d^ (ym) 3.278 3.278 

Measuring Volume Diameter, 

djn (ym) T83-     ■-•-■" - 81 

Measuring Volume Length, 
Itn  '^■^"i) 1 -891 0,833 

Number of Fringes, Nppj '  :    , 58 25 

Beam Diameter, D (mm) 1.1 2.5 

Table 5.3 Comparison of System with Beam Expander to System with no Beam 
Expander 
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The formulas for Table 5.3 are 

ni  irD cos K 

H\f 
m  irD sin K 

(5.1) 

M    1>27 d 

<im 

Notice that for the N^^  calculation d is the beam separation distance 

entering the transmitting lens and should be (22)(2.27) for the Beam 

Expander 9188. The d^ value is the same for the Beam Expander case and 

without the Beam Expander case, so the velocity measurement is not changed. 

This is because for the dual beam system the velocity is 

U = fn df 
^D "f - ^D 2 sin K 

where f^ is the Doppler frequency. 



5.5.2 Signal Processing System -- Tracker Type Processor 

The output of the photodetector is a frequency that varies with 

particle velocity as in Equation (5.2).  The tracker then converts this 

frequency to a voltage which is proportional to the input frequency. 

The tracker has a bandpass filter and frequency discriminator which 

makes the tracker operate under circumstances of relatively poor signal-to- 

noise ratio.  But, it may filter out "good" data if the "data density" is 

so low that the next good data has a frequency that lies outside the filter 

bandwidth.  Then, the tracker holds the last reading until a frequency is 

in the range and is accepted by the tracker.  The data density is referred 

to the time between successive, measurable signal bursts compared with the 

time scale of the velocity fluctuations.  So, the data density is a 

quantity relative to the velocity fluctuation.  For propeller flow 

measurements, the velocity fluctuation is very high when the measuring 

point is across the vortex sheet.  A loss of data may be anticipated in 

this kind of measurement.  If the bandwidth of the bandpass filter is 

increased, this problem can certainly be reduced, but this also reduces the 

ability of the tracker to distinguish signal from noise.  The model 1090 

tracker has three frequency ranges, each with a bandwidth of ]0%  of full 

scale, as shown in Table 5. ■4.  The bandwidth vs. frequency in [TSl] has a 

log scale.  A constant bandwidth in the log scale may give rise to a 

misunderstanding.  It looks wider at the bottom (lower frequency) than at 

the top (higher frequency).  Thus, it was pointed out incorrectly by Min 

[1978] that the "operation should be towards the bottom of the range for 

maximum capture bandwidth." 



Tracking Range 
(MHz) 

Output 
(V/MHz) 

Bandwidth 
(MHz) 

Slew Rate 
(MHz/ms) 

High Frequency 0.5 - 50 
Mid Frequency 0.02 - 5 
Low Frequency      0.002 - 0.5 

0.1 
1 .0 
10 

5 
0.5 
0.05 

400 
10 
0.1 

Table 5.4 Tracker Characteristics 

The slew rate (in Table 5.4) is the rate at which the tracker can slew 

up and down its full range in automatic mode.  The slew rate is another 

limitation other than the bandwidth.  These two limitations are different 

and should not be confused.  The bandwidth is, as mentioned before, just a 

window (or a filter).  Any data having a frequency difference with the 

previous data, over the window size, will be regarded as noise and be 

filtered out.  If the flow acceleration is very high and if the data 

density is relatively low, "good data" may be filtered out because the 

bandwidth is too narrow.  If, again, the flow acceleration is very high but 

the data density is very high also, then the tracker may track the signal 

very well until the acceleration is so high that the tracker could not slew 

with the flow. Usually, the bandwidth limitation, which depends on data 

rate, is reached sooner than the slew rate limitation. 

5.5.3 Data Processing System — MINC-11 

MINC (Modular Instrument Computer) has one analog-to-digital converter 

which has an input range of -5.12 V to +5.12 V, with a resolution of one 

part in 4095, enabling it to detect differences as small as 2.5 mV. 

The voltage output from the tracker is first sent to a Daytronics 

signal conditioner. One module of this signal conditioner is an Analog 
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Input Amplifier through which the tracker output can be amplified up to 

±5.0 V.  The amplified voltage is then sent to MINC to be converted to 

digital.  The advantage of this magnification is to increase the accuracy 

of the voltage (therefore the velocity) measurement.  An n-times 

magnification sill give n-times greater accuracy.  This is especially 

useful for low-velocity measurement.  But, care should be taken to ensure 

that the amplified signal is not larger than 5 V. ■ 

The computer program used for data processing is an interactive 

program.  The user is asked to enter at the keyboard the coordinates of the 

measuring point; the sampling frequency (or data points per one 

revolution); the number of revolutions; whether to take new data, repeat 

old data, or record the data; and so on.  For each revolution, the computer 

starts to take data when a Schmidtt trigger is fired and stops taking data 

when the specified number of data points for one cycle have been taken. 

Then, the computer waits for the next fire of the Schmidtt trigger to start 

a new cycle of the data-taking process. The Schmidtt trigger is fired by a 

magnetic pickup which can be inducted when the propeller shaft is at a 

particular set angle.  All of this setup is to guarantee that for each 

cycle the data-taking process is starting at the same angular position.  It 

usually needs 200 cycles or more to have smooth averaged data, and needs 

400 data points uniformly spaced in each cycle to give a resolution of less 

than 1°.  It is certainly necessary to record those data if a turbulent 

analysis is required.  Then, the total number of data points will be 80,000 

or more, which exceeds the capacity of one floppy disk.  Fortunately, only 

the averaged (cycle average) data is needed for this thesis.  Therefore, 

the computer program replaces the old cycle data by the sum of old cycle 

data and new cycle data, and the problem of storage does not occur. 
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5.6 Experiment Using Propeller ^660       ' .,, 

5.6.1  Checking the Measured Velocities against Calculated Velocities 

Before doing any measurements, it is always wise to check the 

reliability of the measuring system. 

A direct comparison of the averaged unsteady velocities with 

theoretical predictions is ideal.  If they match, then they are assumed to 

be correct. 

The theoretical prediction has limitations from assumptions such as 

inviscid flow, and with its numerical model weaknesses such as a 

simplified, serai-empirical trailing vortex model.  So, the prediction is 

usually not reliable in the trailing vortex region where the viscous vortex 

sheets with very complicated shape are embedded.  The only region that is 

clear and thus reliable is upstream from the blades.  But, if the measuring 

point is too far away from the blades, the velocities induced by the blades 

and the trailing wakes may be too weak to be seen.  A point about 0.01 R 

ahead of the leading edge was chosen at r = 0.901 R, which is far away from 

the hub so that the hub effects may be neglected.  The prediction has been 

done by PSF2 — a computer program which ignores the hub effects. The 

averaged tangential velocity is zero as predicted by PSF2.  It is certainly 

a good idea to check the computer program, because, theoretically, the 

averaged tangential velocity is zero ahead of the blades.  All three 

components of the velocity are shown in Figure 5.5. 

As for the measurements, the axial component and the radial component 

were taken in forward scatter mode, while the tangential component was 

taken in backscatter mode.  The axial component can be measured at any 
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point when the laser beams were horizontal and the radial component can be 

obtained by measuring a vertical component in the center plane of the 

tunnel when the laser beams were vertical. The tangential component can be 

obtained by measuring a vertical component at the z-axis when the laser 

beams were vertical. This tangential component could only be measured in 

backscatter mode because of the existence of the propeller shaft which 

blocks the laser beams. Forward scatter mode can theoretically give 100 to 

1000 times higher signal strength than backscatter mode [TSI, p.6].  In the 

author's experience, forward scatter mode has a sampling rate 5 to 10 times 

higher than backscatter mode.  So, it is highly recommended that forward 

scatter mode be used whenever possible. 

The comparison between measurement and calculation is shown in 

Figure 5.6, in which the induced velocities are plotted.  The propeller 

speed was 1000 rpm, while the impeller speed was 2M8 rpra (so that 

J = 0.976).  The hub diameter was 1.2" larger than the shaft diameter. 

There was an adaptor connected smoothly to both the shaft and the hub. 

Because the velocity was increased as the fluid flowed over this adaptor, 

the measured induced velocity should be subtracted from that increase.  The 

resulting comparison was excellent.  So, both the numerical model and the 

measuring system are reliable, at least for this "easy" point.  The "hard" 

points for the numerical model may also be difficult to measure due to the 

existence of a rapid change in the flow field — the trailing vortex 

sheets, which will be discussed in the next section. 
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5.5.2 What was Wrong with the Radial Components? 

As a continuation of the check of the measuring system, from the last 

section, a point in the trailing vortex region was examined.  A negative 

radial component (an inward flow) is anticipated due to the flow 

contraction.  But, the measured radial velocity was positive on the average 

which meant that the fluid was flowing out instead of flowing in! 

The measurement was at x = 0.281 R, r = 0.917 R, and 9=0° (upper 

half plane of tunnel), with the propeller and impeller at 1000 and 2^48 rpm 

respectively.  When the measuring point was moved to 6 = 180° (lower half 

plane) while the other conditions remained the same, the radial velocity 

remained outward, although this time the velocity was downward in contrast 

to the last time (9 = 0°) when the velocity was upward. 

In order to make sure that the measuring point was inside the 

slipstream, the tunnel pressure was reduced until the streamlines were 

visible from the cavity air bubble.  From this, the measuring point was 

clearly shown to be inside the slipstream, although very close to it. 

What was wrong?  The same measuring system was working well in 

section 5.5.1.  A so-called improved technique [Schoenberger, 1983, 198^1] 

was tried.  It was found that there had been an error in his software, or 

more specifically, the first argument in the subroutine MADC2 had been 

treated incorrectly.  There also was an error in his hardware.  The 

monostable, which was made by him, had only expanded the synch pulse to one 

microsecond, not 100 microseconds as intended.  After the two errors had 

been fixed, the radial velocity was still wrong.  A reduction of propeller 

and impeller speed with J constant was tried.   The change in averaged 

Suggested by Mr. Dean Lewis at MHL. 



velocity was immediately seen to be in the right direction — radial 

velocity changed from an outward direction to an inward direction. 

A systematic study of the relationship between the propeller speed and 

the radial velocity was carried out.  The results are shown in Figure 5.7, . 

Figure 5.8, and Figure 5.9. 

In Figure 5.7, eight different propeller speeds from 300 rpm to 1000 

rpm were used while the J value was kept constant (0.976).  The radial 

velocities are nondimenslonalized with respect to the free stream; the 

abscissa is nondimenslonalized to radians. Each curve representing the 

unsteady radial velocity consists of 400 data points each of which was an 

average of 200 revolutions.  In addition to the unsteady velocity curves, 

the mean value of each curve is shown.  The mean values decrease from 0.107 

(outward) to -0.103 (inward) as the propeller speed decreases from 1000 to 

300 rpm. 

Most of the measurements were repeated by increasing the gain of the 

tracker as shown in Figure 5.8.  Comparison of Figure 5.7 and Figure 5.8 

indicates that the gain is another factor other than the speed influencing 

the measurement.  It shows that a higher gain makes the velocity "converge" 

faster to the "true" value (mean = -0.102) at 500 rpm (compared to the 

lower gain case — mean = -0.103 at 300 rpm). 

The influence of position was investigated as well by changing the 

position from 6 = 0° to 6 = 180° (or r = +0.917 R in Figure 5.8 to 

r = -0.917 R in Figure 5.9 — r should always be positive; by definition, a 

negative value is just shorthand for e = 180°). Under the same conditions 

(including approximately the same gain), the discrepancies between 

Figure 5.8 and Figure 5.9 show the sensitivity of the measuring position. 

Becuase of the errors in defining a center, the symmetry of the upper plane 
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and the lower plane with respect to the center may not be strictly correct. 

An error of 0.1 in. may exist. The convergent mean radial velocity is 

-0.126 this time. 

5.5.3 The Answers 

The hint for answering the question which arose in the last section is 

in Figures 5.7, 5.8, and 5.9.  That is, there are two things in common in 

all those curves:  (1) There are two kinds of slope, one mild and the other 

steeper, for each curve; and (2) The data lost is always in the trough of 

the curve, not in the crest of the curve.  Recall that those data were 

recorded immediately after the firing of the Schmidtt trigger which is at an 

angle of 0.0 in those curves. All of the above indicates that the tracker 

may lose tracking when the radial velocities are accelerated inward.  This 

kind of loss of data is more serious when the propeller speed is faster. 

The answer to the last question is that the measuring point was across 

a vortex sheet where the data density was too low and the data was lost 

because the tracker rejected new data beyond its bandwidth.  Recall that 

the data density is a relative concept; it is low if the local velocity 

fluctuation is high.  The most rapid change of velocity occurs when the 

measuring point is across a vortex sheet or a vortex tube.  The radial 

velocities are almost tangent to the velocity jump across the trailing 

vortex sheet at most radii, while axial velocities and tangential 

velocities are almost perpendicular to it.  So, the radial components are 

the most difficult of the three components to measure.  When the propeller 

speed is reduced, the data density increases, the number of data points 

rejected decreases, and the results are better. 
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The influence of gain on measurement is such that the larger the gain 

the larger the signal and the larger the noise.  A stronger signal makes 

the tracker easier to track, so the data density is higher. But, the noise 

may confuse the track if it is too large.  Therefore, the gain can not be 

too large or too small.  In the author's experience, the radial component 

measurment is optimum when the "Out of Range" light becomes all red and 

before the tracker loses its tracking. 

As for the sensitivity of the position, it is a very interesting 

problem.  From it, the structure of the trailing vortex (including the hub 

vortex, whose description is one of the purposes of the experiment) may be 

understood, as will be seen in the next section. 

5.6.■4 A Hypothesis 

Suppose the radial velocities in Figures 5.7, 5.8, and 5.9 can be 

decomposed into two components:  one is a rapidly changing component from a 

strong local trailing vortex sheet; the other is a mild component 

influenced by all the other velocities except the local vortex sheet. 

While the second component is not sensitive to the position, the first one 

is.  The shape of the trailing vortex is a function of position.  Although 

this function is not very sensitive to the position (for example, the pitch 

of the trailing vortex is not very sensitive), the velocities induced by 

these vortex sheets are sensitive to position.  This is because the vortex 

sheet is very thin, and a point above a vortex sheet has a sign opposite in 

velocity to that of a point below the vortex sheet. 
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Suppose the mild component (which is not sensitive to position) has a 

shape as in Figure 5.10a and a steeper component (which is sensitive to 

position) has a shape as in Figure 5.10b,  Then the superposition of  -, 

Fig. S.lOo        FJg.SilOb      Fig. 5.10c Fig. 5.IOd 

Figure 5.10a and 5.10b may look like Figure 5.10c or Figure 5.10d, ' 

depending on the relative position of Figure 5.10a and Figure 5.10b. 

From Figure 5.10c and Figure 5.10d, not only can the discrepancies 

between Figure 5.8 and Figure 5.9 be explained but the characteristics of 

the radial velocity will also be understood better.  In short, the radial 

velocity (this may be extended to axial and tangential velocities as well) 

consists of two components:  one from a local strong vortex sheet, and the 

other from all influences other than this vortex sheet.  Second, the part 

with steeper slope is due to the local vortex sheet while the other part 

with mild slope is due to the other influences. The fact that a steep 

slope is evidence of a strong vortex sheet will be useful in identifying 

the existence of the "hub vortex sheet." Third, the dent in Figures 5.7, 

5.8, and 5.9 is not a viscous dent but a result of superposition,  A ques- 

tion thus arises:  are all the "dents" found in [Min, 1977], [Kobayashi, 

1981], and [Schoenberger, 1983] also just results of superposition, and not 

of viscosity? It may be necessary to collect more data to answer this 
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question (see next section).  But, before doing so, it is a coincidence 

that all the dents found are close to the tip region (r > 0.6 R, say) where 

there are always strong vortex sheets.  A dent in the axial component or in 

the tangential component that is relatively smaller (or smoother) than the 

radial component is just because the orientations of the radial components 

are almost parallel to the jump velocity of the vortex sheet while the 

other two are almost perpendicular to the jump velocity, 

5.6.5 Some Evidence 

A velocity survey at one station very close to the blade trailing edge 

of propeller M660 has been presented in Figures 5.11 to 5.13, parts a, b, 

and c, a total of nine figures.  This includes three components ~ axial, 

radial, and tangential.  Each component has 12 curves representing 12 

different radii.  These are further grouped into three regions from those 

12 radial positions, namely, the tip flow region, the mid-spin region, and 

the near-hub region.  Each region has its own characteristics which will be 

seen next.  All nine figures have the same scale so that the comparison 

will be easier.  The propeller speed was 300 rpm and the advance 

coefficient was 0.976. 

(A)  Radial Components 

(i)  Tip Flow Region (Figure 5.11a) 

It is seen that at r = 0.95 R the velocity curve is a  , 

periodic function of angle with a single peak in each blade 
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period.  When moving inward to r = 0.933 R, a sharp second peak 

appears. When moving further inward (r = 0.917 R or r = 0.9 R), 

this second peak gets smaller.  To explain the behavior of those 

curves, the hypothesis in section 5.6.4 will be adopted. At r = 

0.95 R, the measuring point was outside the slipstream and the 

velocity was induced there globally; in other words, there was no 

jump velocity for the local vortex sheet. At r = 0.933 R, the 

measuring point was inside the slipstream and was in a strong 

vortex sheet; the jump velocity due to this vortex sheet was 

superimposed to a global induced velocity curve which is not 

different (i.e., not sensitive to position) from the curve at r = 

0.95 R.  The fact that the jump velocities are getting weaker 

when r is further inward indicates that the vortex sheets are 

getting weaker as well. But meanwhile, the global part only 

changed a little (again, not sensitive to position).  From the 

above, a tip vortex (near r = 0.933 R) can be defined as a rolled 

up vortex sheet.  It is a part of the vortex sheet, not different 

from other parts except it is stronger. Notice that the loss of 

peak value and/or trough value is more serious at r = 0.933 R 

than at inner radii.  This indicates that the data 

density/bandwidth problem still exists in the tip vortex region, 

even when the propeller speed was 300 rpm! 

From the hypothesis of section 5.6.4, the dents in all these 

curves are just a result of superposition of a component which is 

sensitive to position with a component which is not sensitive to 

position.  If this hypothesis is right, what about the concept of 

viscous dents?  In fact, they both are correct.  There are 
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viscous layers shedding from the surface of the blades.  They are 

very thin boundary layers which are modeled as vortex sheets with 

zero thickness, in inviscid flow. The strength of the vortex 

sheet (thus the jump velocity) equals the derivative of the 

vortex bound to the blade, from potential theory.  The thickness 

of the boundary layer (or the vortex sheet) can only be predicted 

by three-dimensional boundary layer theory, which is beyond the 

scope of this thesis. Also, recall that the thickness is a 

function of Reynolds number.  The thickness measured from 

Figure 5.11a is only for a particular Reynolds number. 

The hypothesis of superposition of two components may be 

right, but the application of it to the prediction of velocity is 

handicapped by the inability to predict the thickness of the 

vortex sheet from potential theory. 

(ii) Mid-Span Region (Figure 5.11b) 

Here, one thing is shown:  the vortex sheet changes sign 

around the mid-span region. These four curves all have two parts 

with two kinds of slope — one steeper and the other mild.  The 

steeper side is recognized as the vortex sheet.  In the region of 

outer radii (including the tip flow region in Figure 5.11a), the 

velocity induced in the upper half plane by a vortex sheet has a 

curve similar to that of Figure 5.10b, which has a steeper slope 

from left top to right bottom.  If the vortex sheet has the 

opposite sign, the steeper slope part will change orientation, 
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becoming a line from right top to left bottom.  This is exactly 

what happened in the curve of r = 0.583 R. 

(iii)  Near-Hub Region (Figure 5.11c) 

The fact that these four curves are different from those in 

Figure 5.11a indicates that the vortex sheet structure is 

different in these two regions.  In short, there is no 

concentrated (rolled-up) vortex in the hub region as there is in 

the tip region.  This provides evidence for the first theory for 

the hub vortex instead of the second theory (see Chapter 1). The 

nominal hub radius is about 0.288 R or less at this station.  The 

radial component at r = 0.3 R shows a vortex sheet of jumping 

velocity +0.1 of free stream velocity, while there is a jump 

velocity of ±0.6 of free stream velocity in the tip vortex. 

Though the application of the hypothesis of 5.6.4 is limited 

by the unknown thickness of the vortex sheet, the determination 

of the position of the vortex sheet from the measured radial 

velocities is available.  By measuring the angular position of 

the midpoint of the steeper slope (in Figure 5.11) and the 

angular position of the Schmidtt trigger relative to the 

propeller blade, the angular position of the vortex sheet rel- 

ative to the blade is just the summation of the above two angles. 



101 

1 .28- 

1.08. 

8.88- 

— r-.417R 

— r-.333R 

--r-.3R 

— r-.288R 

g-8.48. 

H 
i-8.60- 
o 
z 

-0.88—i 

-1 .80— 

-1.28- T T 
8.8 

FIG 
72.8 144.8 216.8 

_    ^ ^ ^    ^       ANGLE  CDEGREES5 
5.11 Cc!) 

288.8 

RADIAL VELOCITY NEAR HUB REGION 
X=.281R CT.E.) PR4660 J=.976 

368.8 



-   102   - 

(B) Axial Components 

The axial components were measured at the same point that the 

radial components were measured.  That means that there is no phase 

shift between the two.  It is immediately found that the velocity 

induced by the local vortex sheet is at the same angular position as 

that for the radial component. But, the magnitudes of the jump 

velocities are relatively smaller than those of radial components, 

which was predicted. 

The dents in the axial velocities in Figure 5.12 are all similar 

to those found in Min [1978], Kobayashi [1981], and Shoenberger 

[1983].  It is right to say these dents are viscous dents from 

boundary layer theory as well as to say these dents are jump 

velocities from the local vortex sheet, as was discussed in (A)(i). 

(C) Tangential Components 

■I 

The tangential components in Figure 5.13a can be used to 

determine the radial position of the tip vortex.  The phase of peak 

value at r = 0.933 R has shifted 180° from that at r = 0.95 R.  A 

narrowing of the distance between those two radii can determine the 

tip vortex more accurately. 

When it is approaching the hub region, the influence of potential 

flow is still very strong (Figure 5.13c), even at r = 0.305 R.  The 

curve for r = 0.283 R is a straight line, showing that the Influence 

of potential flow has disappeared and the flow is dominated by a 

rotating hub boundary. ' ■   - 
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Before closing this section, it may be interesting to look at the 

deformation of the vortex sheet along the x-direction.  Figure 5.14a shows 

radial velocities in the tip flow region at x = 0.353 R (0.072 R downstream 

from the last station).  Basically, the curves in Figure 5.14a are similar 

to those in Figure 5.11a.  The tip vortex is still between r = 0.95 R and 

r = 0.933 R. The angular position of the tip vortex has a difference of 

about 14.4°.  The average pitch diameter ratio of the tip vortex can be 

approximately estimated as: 

[^ 
(360(0.072)  Q g 

avg.    (14.4)(2) 

The radial velocities further down (x = 1.053 Ri which is in the hub 

apex plane) are shown in Figure 5.14b.  The shape of the velocity is 

slightly different from that in Figure 5.14a or Figure 5.11a.  That is 

because the 6 position of the jump component relative to the global 

component changed.  The tip vortex is between r = 0.917 R and r = 0.9 R, 

which is closer to the propeller shaft than the last two stations, which 

means that a contraction of tip vortex occurred.  The average pitch 

diameter ratio can only be estimated if the number of vortex sheets between 

X = 1.053 R and x = 0.353 R is known.  If we assume that there is one more 

vortex sheet between these two stations, then the ratio will be: 

[^ = (360)(1.053 - 0.353) ^ , p 
avg.     (33.1 + 72)(2) 

where 33.1° is the phase difference between Figure 5.14a and Figure 5.14b, 

and 72° is just the blade interval angle. 
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5.7 Circulation Conservation Law 

In an inviscid fluid acted upon by conservative forces (e.g., 

gravity), the circulation r, defined as the integrated tangential velocity 

around any closed contour C in the fluid: 

r = o V-dr, . (5.3) 

■'c 

is constant about any closed material contour moving with the fluid. This 

is Kelvin's theorem for the conservation of circulation: 

^ = 1^- v.vr = 0  . (5.4) 

In other words, once a certain amount of circulation is associated with a 

fluid, it will stay with that fluid forever. This is simply because the 

rotation rate of fluid particles is not changed when zero shear stresses 

act on the particles.  Zero shear stress is a direct result of an inviscid 

fluid. "' •, 

5.7.1  The Application of Kelvin's Theorem to a Propeller 

By applying Kelvin's theorem to a propeller, a relationship between 

the circulation at the blades and the circulation in the trailing vortex 

wake can be established, as shown below. 
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Trolling Vortex Sh««t 

Figure 5.15 A Two-Bladed Propeller and Its Wake 

For simplicity, a two-bladed propeller and its wake, shown in 

Figure 5.15, will be demonstrated.  A contour, abcda, is chosen in such a 

manner that there is no contribution to the circulation from either the 

path between e and f or the path between g and h, since these paths are 

intentionally taken in the direction of the flow of the vortex sheets.  The 

trailing vortex shed from the blade section r^ is deformed so that it has 

radial distance r^ at x^ and r^ at x^.  The circulation Fj at r^ is related 

to the bound vortex Tjj(rj,5) by Stoke's theorem: • 

f^t 
^hd? (5.5) 

where 5 is a local chord coordinate, and E,-^  and E,^  correspond to the blade 

leading edge and blade trailing edge respectively.  Finally, the 

circulation along the contour should be zero from Kelvin's theorem. Thus: 
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r^(r^) = -2r^(r,)      ' ■   "'       ; (5.6) 

The same is true for TjCrg), i.e., 

T,{r^)   = -2T^ir^) ' (5.7) 

By measuring the tangential velocity along the path, bhdf, the circulation 

of r^ can be calculated using (5.3).  Thus, the circulation r (r ) will be: 

^^^) = -I 2 

bhdf 

V(r ).dr  . (5.8) 

for an N-bladed propeller. ,■ , 

The only unknown is the relationship between r^  and r^.  In other 

words, the way in which the trailing vortex sheet deforms is unknown 

although it is assumed to behave as a cubic function in the numerical 

model. .        ; 

An assumption was made that the velocity of the trailing vortex equals 

the circumferential mean flow, which can be measured, as will be seen in 

the next section. 

5.7.2 Circumferential Mean Streamlines 

The circumferential mean axial velocities and the circumferential mean 

radial velocities for propeller 4660 with a short hub were measured at 14 

stations — from the blade trailing edge to far downstream.  Both the axial 

component and the radial component were originally measured (using the 
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backscattering mode) at a propeller speed of 1000 rpm and an impeller speed 

of 2^8 rpm, so that J = 0.976. Because of the data density/tracker 

bandwidth problem (discussed in section 5.2), the measurements were 

repeated (using the forward scattering mode) at lower speeds — 300 rpm for 

the propeller and 74 rpm for the impeller (so that J was still 0.976).  The 

mean radial velocities changed considerably, while the mean axial 

velocities remained the same.  This was because the only places where the 

data density was too low for the tracker were the points which were across 

vortex sheets. Also, the orientations of the jump velocities induced by 

the vortex sheets were nearly in the radial direction. By reducing the 

speed by a factor of 3.33, while keeping J constant, the time scale is 

increased by a factor of 3-33 and the velocities will be decreased by the 

same factor. Thus, the data density is increased by a factor of 11.11. 

The circumferential mean axial velocities are shown in Figures 5.16a 

through 5.16c, and the circumferential mean radial velocies are shown in 

Figures 5.17a through 5.17c. 

The radial velocity can only be measured in the center plane of the 

tunnel, along a vertical line.  Both the radial velocity and the axial 

velocity were measured at the same points, which were along a vertical line 

in the tunnel center plane.  Dead corners for measuring either the axial 

component or the radial component occurred when the measuring point was 

very close to the body.  A schematic plot of a dead corner for measuring 

the radial component is shown in Figure 5.18a. 
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tunnel center plone 

Figure 5.18a Dead Corner for Measuring the Radial Velocities 

The points on segment AB could not be measured because one of the two laser 

beams was blocked by the body.  The length of AB is: - 

AB = AO - BO 
cos K H   H [ cos ic    J 

where K is the half angle of the transmitting lens and r^j is the hub radius 

at this particular station.  Notice that AB is proportional to r„, so that 

AB is a maximum at the trailing edge station and is zero at the hub apex 

station. A typical value of AB is 0.0084 inch if < is 5.538° (Lens 9118) 

and Vy^ =  1.8 inch.  A typical value of the measuring volume diameter is 

0.00032 inch.  The calculation of the length of the dead corner for 

measuring the axial component is more difficult. A top view of this dead 

corner is shown schematically in Figure 5.l8b. 
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Beam I  Beom 2 

Figure 5.18b Dead Corner for Measuring the Axial Velocities 

As seen in Figure 5.18b, laser beam 1 is blocked by the body at point D 

while beam 2 reaches the measuring point C.  The length of the dead corner 

is related to r^,   K,  and the derivative of r-^  with respect to x. The 

length of the dead corner for axial velocity is obviously smaller than that 

for radial velocity.  Due to the existence of those dead corners, the 

velocities shown in Figures 5.15 and 5.17 could not reach zero, which is 

exactly the value for the velocities at the boundary. However, a vertical 

line (not shown) passing the last data point on each curve is almost 

correct, because the dead corners are so narrow that they are nearly zero 

at the scale of Figures 5.15 and 5.17. 

The velocity vectors, constructed from measured axial and radial 

velocities, and the hub are plotted in Figure 5.19.  The directions of 

those vectors, although for simplicity not shown, point in the downstream 

direction.  The velocities, although not zero at the hub due to the 

measuring problem at the dead corner, are tangent to the hub — this is a 

very good way to check the measurements. The dead corner in the 

measurement disappeared for the stations behind (and including) the station 

at the hub apex.  It is seen that the velocities decrease to zero at the 

hub apex, which is a stagnation point. 
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The construction of circumferential mean streamlines from the mean 

velocity vectors is straightforward.  Although there are many ways do this, 

only four of them will be investigated here.  The first three methods 

construct the streamlines by integrating both the axial and radial 

velocities in the downstream direction.  The fourth method constructs the 

streamlines by integrating only the axial velocity along the radial 

direction, from the dividing streamline to the top. 

(i) Method 1 (see Figure 5.20a) 

Each streamline starts with a point 1, say, along the vertical 

line at station 1, the station closest to the blade trailing 

edge. It then follows a straight line having a slope equal to 

the slope of the velocity vector at point 1, until it reaches 

the next station, station 2 at point 2.  At point 2, the 

streamline changes slope.  The new slope equals the slope of 

^     the velocity vector at point 2.  The velocity at point 2 can 

be interpolated by fitting a spline curve to the velocity data 

along station 2.  The streamlines were drawn by repeating the 

above procedures until the last station was reached.  They 

were then extended a short distance further downstream, 

following the velocity at the last station. 

(ii) Method 2 (see Figure 5.20b) 

The location of point 2 and the velocity at point 2 were 

obtained in the same way as in method 1.  Point 3, the 
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midpoint of segment 1 2, was used as an auxiliary point from 

which a point ^1, say, at station 2 can be determined.  The 

slope of segment 3 H  equals the slope of the average of the 

velocities at points 1 and 2.  The segment 1 ^ is the 

streamline between station 1 and station 2. 

(iii) Method 3 (see Figure 5.20c) 

There were three auxiliary points — points 2, 3, and M — 

which were obtained using method 2.  Point 5 at station 2 was 

determined in such a way that the slope of segment 3 5 equals 

the slope of the average of the velocities at points 3 and i(. 

The segment 1 5 will be the streamline between stations 

1 and 2. 

It was found that the differences for the streamlines among these three 

methods were very small.  This is because the distance between any two 

consecutive stations is small enough that the slope of the streamlines is 

nearly constant.  The streamlines are shown in Figure 5.21.  It is seen 

that the streamline closest to the body retreats from the body as fluid 

flows downstream.  This can be predicted from continuity; as the velocity 

of the flow decreases near the stagnation point, the space between adjacent 

streamlines gets wider. However, the question arises:  was the flow 

separated from the body? The error in constructing the streamlines may 

accumulate in integrating from upstream to downstream.  This kind of error- 

accumulation problem can be avoided using the fourth method. 
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(iv) Method 4 

For axlsymmetrlc flow, the stream function is defined by 

[Newman, 1977] : 

(u^rdr - u^rdx) (5.8) 2ir(|j = Q = 2Tr 

s(r,x) 

where 4; is the stream function and Q is the flux.  For 

experimental data at any station dx = 0, Equation (5.8) simply 

becomes: 

1^ u^i^dr (5.9) 
r. 1 

The boundary condition for this integration is \|; = 0 at the 

dividing streamline, which is the combination of the hub 

surface and an array which starts at the hub apex and goes 

along the rotation axis. Notice that this method only 

requires axial components at each station.  The integration 

was performed by first fitting u^^r with a spline curve, and 

then integrating the spline curve. Spline curves are then fit 

to the constant stream functions at each station.  The 

streamlines approach closer to the body than those in 

Figure 5.21, and separation does not occur.  The streamlines 

become "wiggles" when they are far away from the dividing 

streamline.  This may be due to the accumulating error of 

integration or the measurement error in the tip flow region. 

However, the streamlines in the tip flow region, constructed 

by the first three methods, seem to be smoother, which may 

indicate that the measurement error Is acceptable. 
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Streamlines from a hybrid method which uses both methods 

3 and 4 are shown in Figure 5.22.  The top four streamlines 

are obtained from method 3 and the rest from method H,    The 

stream function is only known for the streamlines from 

method 4.  A nondimensional stream function is defined by: 

. -  800 ijj ■ ,   ^ 
^ =  (5.10) 

The ;j;'s for the first 14 streamlines are 0.0625, 0.25, 1, 4, 

9, 16, 25, 36, 49, 64, 81, 100, 121, and 144. '^  for the 

topmost streamline shown in Figure 5.22 approximately 

coincides with the streamline from method 4, with a i^i of 400. 

This means that i]j = 0.5 R^V^ or Q = irR^Vg.  Figure 5.19 shows 

that the radial velocities at the station immediately 

downstream of the hub apex and near the x-axis are directed 

outwards. However, Figure 5.22 indicates that these radial 

velocities should be directed inwards. This conflict may be 

due to the error in the measurement of the radial velocities. 

5.7.3 Tangential Velocity and Circulation 

.. The influence of propeller speed and measuring mode on the tangential 

velocities at the hub apex station was studied (see Figure 5.23) using 

different speed/mode combinations.  The velocities can be divided into two 

regions. The inner region is closer to the hub apex where the tangential 

velocities have a Rankine vortex structure.  In the outer region, the 

tangential velocities arise purely by blade rotation.  The outer region has 

a one-peak curve, except when the propeller speed is 1000 rpm and the 
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backscatter mode is used, in which case a two-peak curve results.  This is 

due to the problem of measurement at high speed, as discussed in section 

5.6.2.  The forward scatter mode has a higher data acquisition rate than 

the backscatter mode, so it is theoretically more accurate.  When the 

propeller velocity is 400 rpm, the tangential velocities measured using the 

forward scatter mode are larger than those measured using the backscatter 

mode in the outer region.  This trend is opposite in the inner region.  The 

reason for this is not yet known.  An averaged discrepancy of 105^ or more 

is seen among these curves, except the case of 1000 rpm which should 

definitely be discarded. 

The tangential velocities were all measured at 300 rpm at five 

stations (shown in Figure 5.24).  Three of them were in the hub region 

where only the backscatter mode can be used.  The nearly vertical lines are 

the surface velocities of the hub. One station was at the hub apex and one 

was further downstream.  The velocities at the hub station were measured 

using the backscatter mode, whereas the velocities further downstream were 

measured using the forward scatter mode in order to obtain better accuracy. 

The circulation calculated using Equation (5.8) and the measured tangential 

velocities are shown in Figure 5.25. 

5.7.4 Conservation of Circulation 

Figure 5.26a shows the result of combining streamlines (Figure 5.22) 

and tangential velocities (Figure 5.24).  Figure 5.26b shows the result of 

combining streamlines (Figure 5.22) and the circulation distribution curves 

(Figure 5.25).  In Figure 5.26b, conservation of circulation can be roughly 

checked by following any streamline.  The circulation curves and the 
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streamlines in Figure 5.26b were compressed in Figure 5.27 so that the 

circulation conservation law could be checked more easily.  The dotted and 

dashed lines represent the circulation, while the short solid line repre- 

sents the change in circulation along the streamlines.  The solid line runs 

from a station near the trailing edge (x = 0.281 R) to a station in the wake 

(x = 1.253 R).  The solid lines were constructed by connecting the raw data 

without any curve fitting.  Circulation is conserved if these solid lines 

are horizontal.  An increase in circulation is seen in the region from 

r = 0.4 R to r = 0.9 R.  A decrease in circulation is seen when r = 0.95 R 

is reached.  An decrease and then increase in circulation is seen in the 

region between the hub surface and r = 0.4 R.  Notice that the velocities at 

the last station (x = 1.253 R) were the only ones measured using the forward 

scatter mode, which usually gives larger velocities (see Figure 5.23). 

Thus, the increase in circulation probably is due to measurement error. 

Another error may come from the assumption that the vortex sheet follows the 

mean streamlines.  This assumption may be true near the hub region but not 

in the tip region where the tip vortex contracts more than the mean 

streamlines. Nevertheless, circulation is, roughly speaking, conserved. 

5.7.5 The Circulation of the Hub Vortex V 

It was determined in the last section that circulation is, roughly 

speaking, conserved along the mean streamlines. Here, an emphasis will be 

put on the circulation of the hub vortex and its relationship with the 

circulation at the hub near the trailing edge.  The circulation of the hub 

vortex is very important in calculating the force on the hub.  This will be 

discussed in Chapter 6.  ' 
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The circulation of the hub vortex depends on the blade geometry, the 

hub geometry, and the advance coefficient.  There were two propellers 

involved in this study, propellers 4660 and UH98.     Propeller 4660 has a 

lower pitch and lower camber at the root and a larger hub-diameter ratio 

than propeller 4498.  Propeller 4660 has three different fairing lengths, 

whereas propeller 4498 has only one (see Figures 5.1, 5.2, and 5.3).  For 

propeller 4660, there were two advance coefficients for each of the three 

different fairings.  There were four advance coefficients for propeller 

4498.  In each case above, there were two tangential velocity measurements 

along two radial lines.  One radial line was in a plane very close to the 

trailing edge, and the other was in a plane through the hub apex. 

In addition, the tangential velocities at 11 stations for propeller 

4498, with J = 0.865, were measured in order to understand the circulation 

of a propeller with a heavy load at the root. 

Finally, the case of a dummy hub was studied for both propellers.  The 

tangential velocities were measured in the dummy hub apex plane, using the 

same impeller speeds and the same propeller shaft speeds as in the case of 

propellers with blades. 

5.7.5.A The Hub Vortex of Propeller 4498 

The tangential velocities for propeller 4498, with J = 0.865, are 

shown for 11 stations in Figures 5.28a and 5.28b.  The corresponding 

circulation distributions are shown in Figures 5.29a and 5.29b.  It was 

found that the tangential velocity can again be divided into two regions 

(recall that the same phenomenon was found for propeller 4660; see section 

5.7.3).  One region was a potential flow region, and the other was a 
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viscous flow region.  The potential flow arose purely due to the blade 

loading, whereas the viscous flow was due to the rotating hub.  At the 

first station, the one closest to the trailing edge, the velocity of 

potential flow was lower than the hub surface speed.  An acceleration of 

tangential velocity by the body was anticipated.  This acceleration 

continued as the flow moved downstream until the tangential velocity of the 

flow equaled the hub surface speed.  This may happen because the hub 

surface speed decreases linearly with hub radius, whereas the speed of the 

fluid particles increases approximately parabolically with hub radius if 

the law of conservation of angular momentum holds (see Figure 5.28a). 

Beyond the equilibrium station (the one where the tangential velocity of 

the flow equals the hub tangential surface speed), the fluid particles were 

decelerated by the body until they were beyond the hub apex. Beyond the 

hub apex, a strong hub vortex was formed and another effect, which may have 

existed weakly upstream, became stronger.  This effect was due to the 

rolling-up of the vortex sheet into the hub vortex, so that, depending on 

how quickly the rolling-up took place, the circulation of the hub vortex 

was again increased.  The size of the hub vortex became larger, while the 

maximum velocity became smaller as the fluid particles moved further 

downstream (see Figure 5.28b), although the product of the two (i.e., the 

circulation) was still growing because of the rolling-up.  It would 

eventually decay very far downstream because of viscous dissipation (not 

shown in Figure 5.28b). 

Table 5.4 shows the tangential velocity Vj at r^ and the deformation 

of circulation for the 11 stations.  A definition of v^ and r^ is shown in 

Figure 5.30. 
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Station x/R Vj (ft/sec) Tj (in.) 2iTV,rj (ftVsec) 

1 
2 
3 

0.206* 
0.26 
0.44 

6.071 
6.501 
7.102 

1.31 
1.31 
1.26 

4.164 
4.459 
4.685 

acceleration 
region 

4 
5 
6 
7 

0.64 
0.76 

0.84** 

7.951 
11.177 
17.369 
21.325 

1.1 
0.7 
0.42 
0.31 

4.579 
4.097 
3.820 
3.461 

deceleration 
region 

8 
9 

10 
11 

0.88 
1.26 
2.26 
3.26 

21.342 
18.555 
15.470 
14.149 

0.31 
0.37 
0.445 
0.51 

3.464 
3.595 
3.605 
3.778 

rolling-up 
region 
(increase 
again) 

Table 5.4 Deformation of the Circulation of Propeller 4498 

** Trailing Edge 
Hub  Apex 

- V| = rw 

Figure 5.30 Definition of v^ and r^ 

A study of the relationship between the circulation upstream and near the 

trailing edge and the circulation in the hub apex plane was carried out for 

different advance coefficients. The results are shown in Figures 5.31a and 

5.31b.  The corresponding circulation distributions are shown in Figures 

5.32a and 5.32b.  In Figure 5.31b, two curves are missing the peak value of 
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tangential velocity, because the hub vortex cavity made the LDA measurement 

impossible. Those two curves were measured at very low advance 

coefficients.  The tangential velocity v^ at r^ and the circulation are 

shown in Table 5.5.  The loss of circulation was less than 16?. 

J    Position v/Vg r^/R r^   Loss of r^   % 

1.208  T.E. 0.267 0.223 59.5      6.5     10.9 
Hub Apex 0.930 0.057 53-0 

1.121       T.E. 0.315 0.220 69.3 10.5 15.2 
Hub Apex 1.031 0.057 58.8 

1.028  T.E. 0.366 0.223 81.6     12.2     15.0 
Hub Apex 1.218 0.057 69.4 

0.865       T.E. 0.i4il6 0.218 97.2             U.5             IM.9 
Hub  Apex 1.590 0.052 82.7 

Table 5.5 Loss of Circulation of the Hub Vortex of Propeller 
4498 at Four Different Advance Coefficients 
^ _   1000 r^ 

^T " 2 Rv ' ^T ^® ^'^® total circulation of 
all five  blades = 2iTrjVj. 

The loss of circulation may come from the deceleration of the hub; 

therefore the tangential velocities for a dummy hub were measured.  The 

tangential velocities at four stations are shown in Figure 5.33.  It is 

seen that a "hub vortex" is generated by a dummy hub at J = 0.865.  Five 

additional measurements at different J's were performed and are shown in 

Figure 5.34.  The v^ and r^ values as well as the corresponding 

circulations are shown in Table 5.6. ./ 
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J V    / V r/R 
TT 

1 .208 0.282 0.037 10.4 
1 .121 0.290 0.04 11.6 
1 .028 0.303 0.047 14.2 
0.865 0.315 0.05 15.8 

Table 5.6 Tangential Velocity and Circulation of the 
Dummy Hub of Propeller 4498 in the Hub Apex 
Plane for Four Advance Coefficients 

It was discovered (see Tables 5.5 and 5.6) that the loss of circulation 

going from upstream to downstream was almost identical to the circulation 

generated by a dummy hub.  This can be explained simply by the concept of 

relative motion.  In the case of the propeller, the "outer flow" was faster 

than the hub surface speed, and the flow speed was reduced by the hub.  In 

the case of the dummy hub, the "outer flow" had zero tangential velocity, 

and the flow speed was accelerated by the surface of the body by almost the 

same amount as the reduction in the case of the propeller. More data is 

needed to support this explanation; hence, further study of the circulation 

deformation using propeller 4660 will be discussed next. 

5.7.5.B The Hub Vortex of Propeller 4660 

From the previous experiment of section 5.7.3, we know that the 

circulation at the root section of propeller 4660 was nearly zero.  This 

was because the pitch-diameter ratio and the advance coefficient were 

nearly identical and the camber was zero, that is, there was almost zero 

loading at the root section.  If we reduce the advance coefficient, then 

the loading will increase and a finite circulation may appear at the root 

section, as was the case for propeller 4498.  The length effects of 
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fairings on the hub vortex were also investigated.  Three fairings with 

different lengths, introduced in section 5.3, in combination with two 

advance coefficients, gave a total of six different cases.  For each case, 

the tangential velocities at the station close to the trailing edge and at 

the hub apex station were measured.  Figure 5.35a shows the tangential 

velocities near the trailing edge, and Figure 5.35b shows the tangential 

velocies at the hub apex.  The calculation of the change in circulation at 

the hub, from the trailing edge to the hub apex, is shown in Table 5.7. 

J     Hub    Position v^/Vg r/R    r^    Change in r^ 

0.976   Long    T.E. 0.002 0.308    0.6      + 21 
Hub Apex 0.813 0.027   22 

Medium  T.E. 0.079 O.308   24       +3 
Hub Apex 0.739 0.037   27 

Short   T.E. 0.038 0.305   12        +13 
Hub Apex 0.500 0.05    25 

0.525  Long    T.E. 0.460 0.317 146       - 39 
Hub Apex 2.148 0.05 107 

Medium  T.E. 0.502 0.317 159       - 31 
Hub Apex 2.557 0.05 128 

Short   T.E. 0.469 0.325 152 '      - 39 
Hub Apex 2.629 0.043 II3 

Table 5.7  Change in the Circulation of the Hub Vortex of 
Propeller 4650 with Three Different Hub Lengths and 
Two Advance Coefficients 

The tangential velocity at the hub apex for the dummy hubs of propeller 

4560 was measured (Figure 5.36) and the circulation is shown in Table 5. 
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J Hub ^l/^s r^/R Tj 

0.976 Long 
Medium 
Short 

0.531 
0.533 
0.459 

0.025 
0.04 
0.055 

13 
21 
25 

0.525 Long 
Medium 
Short 

0.458 
0.454 
0.414 

0.05 
0.073 
0.108 

23 
33 
45 

Table 5.8 Tangential Velocities and Circulation of 
the Dummy Hubs of Propeller 4660 at the Hub 
Apex Plane for Two Advance Coefficients 

It was found, from Tables 5.7 and 5.8, that the increase in circulation, 

for the case where J = 0.976, was comparable to the circulation generated 

by the rotating dummy hubs.  This was because the outer flow had almost 

zero tangential velocity near the hub.  Thus, as far as the boundary layer 

was concerned, it was almost identical to the rotating dummy hub case.  In 

the case where J = 0.525, the situation was opposite.  The outer flow had a 

larger tangential velocity somewhere ahead of the hub apex, so that the 

flow was decelerated and the circulation was reduced.  The reduced amount 

was almost identical to the circulation generated by the dummy hubs. 

5.7.5.C The Hub Vortex of Propeller 4498 without Fairing 

All previous study of the hub vortex has been done using propellers 

with fairings. Here, a study of propeller 4498 without a fairing is 

carried out, and special consideration is made of how much loss in the 

circulation of the hub vortex is due to a blunt hub. 

The tangential velocities were measured at three stations:  the first 

very close to the trailing edge, the second at the end of a screw (which 
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tightens the hub to the shaft) at the hub end on the blunt hub, and the 

third in the plane where the fairing apex was located.  Figure 5.37 shows 

the tangential velocity distribution.  Figure 5.38 shows the corresponding 

circulation distribution.  It shows in Figure 5-37 that the tangential 

velocities in the trailing edge plane are almost identical to the tangential 

velocities in the same place when there was a fairing (see Figure 5.28a). 

The hub vortex at x = 0.84 R in Figure 5.37 has a smaller tangential 

velocity but wider hub vortex core than the hub vortex had when there was a 

fairing.  The circulation of the hub vortex can be calculated and is shown 

in Table 5.5, as before.  It turns out that for the station x = 0.353 R 

(blunt hub end), v^/V^ = 1.157 and r/R = 0.033; hence r^ = 38.2 and there 

is a 61? loss of circulation.  For the station x = 0.84 R, v^/v = 0.841 and 

r^/R = 0.075; hence, Tj =  63.1 and there is a 35? loss of circulation.  The 

circulation of the hub vortex grows from x = 0.353 R to x = 0.84 R. This is 

because at the end of the blunt hub the flow separates and there are two 

small peaks in addition to a large peak in the tangential velocity 

distribution. Hence, the circulation contained in the largest peak (the hub 

vortex) is smaller than the circulation of the hub vortex downstream where 

the largest peak absorbs the other two small peaks through turbulence. 

5.8 Summary 

The circulation is, roughly speaking, conserved along the circumferen- 

tial mean streamlines.  The circulation at the hub will increase when the 

velocity of the outer flow is greater than the hub surface rotation speed, 

and decrease when it is less.  The length of the fairings is relatively unim- 

portant, since the effect of viscosity is relatively small (see Table 5.7). 



161 

2.80- 

1 .80— 

^   1 .60- 

>- 

H    1 . 40- 
o 
o 
lli 
> 

< 
H 

1 .20- 

^    1 . 00. 

< 

0.80. 

o 
H 
CO 

g  0.60- 

H 

2 
g   0.40—1 

0.20— 

0,00- 

— X=.286R  I.E. 

— X«.353R HUB END 

— X==.8^ iri WAice 

.353R 

0 . 00 0 . 20 0.40 0 . 60 0 . 80 1 .00 1 .20 
^^^       ^    ^-,   DISTANCE  FROM  SHAFT  CENTER  r/R 
rib.    b.o7 

CIRCUMFERENTIAL MEAN TANGENTIAL VEL. 
P4498 WITHOUT FAIRWATER; J=0.865 



162  - 

188.8- 

98.8— 

88.8— 

78.8— 

> 

oc  68.8— 
M 
Q. 

<M 
^  58.8- 

S 
<  48.8- 

■z> . o ce 
H 
*-^   38.8- 

®  28.8- 

18.8— 

8.8- 

— X-.2a6R T.E. 

— X-.353R HUB END 

— X=.84R   INJ   WAKE 

8.88 
—!     I     r 

8.28   8.48   8.68   8.88   1 ,88 
DISTANCE FROM SHAFT CENTER r/R 

1 .28 

FIG. 5.38 
CIRCULATION DISTRIBUTION OF P4498 
WITHOUT FAIRWATER; J=8.865 



:    - 163 - 

The hub vortex is a Rankine vortex.  It is formed in a different way 

from the tip vortex.  The tip vortex is formed by the flow rolling over the 

blade tip from the high pressure side to the low pressure side, whereas in 

the root section this rolling-up is prohibited by a solid boundary — the 

hub.  However, a secondary flow is formed so that the fluid flows from the 

high pressure side of one blade to the low pressure side of the adjacent 

blade.  Thus, there is not a concentrated hub vortex along the hub surface, 

only strong trailing vortex sheets (see section 5.6.5).  The hub vortex 

forms when these strong sheets join each other at the hub apex.  The size 

of the hub vortex depends on the viscosity, which is beyond the scope of 

this thesis. However, the strength of the hub vortex can be estimated.  It 

is related to the circulation at the root section through the circulation 

conservation law, with a modification due to the concept of relative 

motion.  The circulation at the root is known for the design problem and 

has been determined in Chapter H  for the analysis problem.  In order to 

calculate the force on the hub, only the strength of the hub vortex is   )": 

important.  This will be discussed in Chapter 6. ■    '  ~ 



164 

CHAPTER 6 

:■.     COMPARISON OF NUMERICAL SOLUTIONS WITH EXPERIMENTAL RESULTS 

So far, the analysis problem has been solved In Chapter 4 and the 

results of the experiments have been shown in Chapter 5.  Now, a comparison 

between the numerical solution and the experimental results is possible — 

each is necessary in order to verify the other.  : 

There will be two bases for comparison:  the circulation distribution 

and the force.  The circulation comparison will be presented in 

section 6.1, and the force comparison in section 6.2. The two propellers 

involved in these comparisons are 4498 and 4660. 

6.1  Comparison of Circulation Distribution 

The analysis problem of propeller 4498 was solved first with a coarse 

grid on the blades, 8 spanwise and 8 chordwise segments on the key blade, 

and 8 spanwise and 4 chordwise segments on the other 4 blades.  The 

afterbody of the hub was fitted with a cubic function.  The artificial 

forebody had a length of one propeller radius. 

The uniform flow was modified in the same way as in Chapter 3.  The 

advance coefficient was 0.889.  The wake alignment was involved in this 

coarse grid run. ' ^  " 

The solution converged in two and a half iterations — three times for 

the blade analysis, two times for the wake alignment, and two times for the 

hub analysis.      '  ■      '   ■    ' -       ■      ^ 
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Next, a finer grid case was run with 18 spanwise segments and 9 

chordwise segments on the key blade, while the other blade retained 8x4 

grids. The wake geometry was fixed and was the same as the converged wake 

for the coarser grids.  Convergence occurred in four and a half iterations. 

The forces on the blade and on the hub were calculated afterwards. 

In order to see the hub effects, a run without the hub was also 

carried out by PSF2.  The circulation distribution from the present method 

(PSF2-HUB) and from PSF2 and the actual measurement are presented in 

Figure 6.1.  The predictions by these programs were very close for the 

outer radii — the discrepancy between numerical and experimental solutions 

for any given point could result from experimental error.  The circulation 

predicted by PSF2-HUB was finite at the hub, which agreed with the 

experimental results, whereas the circulation predicted by PSF2 had a 

tendency to drop to zero as it approached the hub.  This is reasonable, as 

we expect the circulation to go to zero at the endpoints where there are no 

solid boundaries.  So, for a propeller without a hub the circulation drops 

to zero at both the tip and the hub.  For a propeller with a hub, the 

circulation may be finite at the hub and zero again at the tip. 

The CP propeller 4550, with the short hub, was observed at two advance 

coefficients.  A comparison of the circulation distribution for the two 

analytical solutions (one with a hub and one without) and the experimental 

results are shown in Figure 6.2 for J = 0.976 and in Figure 6.3 for 

J = 0.529.  In the experiment, the propeller speed was 300 rpm and the 

impeller speed 74 rpm for J = 0.976, and 790 rpm and 80 rpm respectively 

for J = 0.529.  In the physical model, the inflow was not uniform at the 

propeller disk because the hub radius was about 0.5" (or ^0%  of propeller 

radius) larger than the shaft radius.  So, a wake survey was made for the 
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dummy hub, and the measured inflow was put into the program PSF2.  The 

measured inflow was further modified before being put into program PSF2- 

HUB.  In Figure 6.2, it can be seen that both analytical solutions are very 

close to the experimental results except at the hub.  Once again, the 

circulation predicted by PSF2 had a tendency of dropping to zero at the 

hub. The measured circulation at the hub was finite, although smaller than 

the prediction by PSF2-HUB. 

A question arises:  Why did the prediction of PSF2-HUB become less 

accurate when the propeller was changed from 4498 to 4660? What is the 

difference between these two propellers? A closer look gives the answer 

(see photographs of the two propellers in Figures 6.4a and 6.4b). 

Propeller 4498 is a conventional propeller and has a smaller and simpler 

fillets than a CP propeller, such as propeller 4660.  The blades of 

propeller 4660 were bolted onto the hub.  There was a cutoff at the 

trailing edge of each blade.  These cutoffs were about one fifth of the 

chord length and allowed fluid to go through from the pressure side to the 

suction side, just as it does in the tip region. Thus, the circulation, as 

well as the load, was reduced because of the pressure balance from this 

leakage.  The leakage depended on the details of the attachment between the 

blades and the hub.  The geometry of the hub was simplified for the 

numerical model.  Details, such as bolts, cutoffs, and fillets, were 

ignored in the numerical model.  The blades were modeled as a discretized 

vortex lattice and source segments over the camber surfaces. This simple 

model becomes insufficient when dealing with a complicated geometry as in 



170 

FIG. 6.4.0 A CONVENTIONAL PROPELLER, PROPELLER 4498 

FIG. 6.4. b A CCI-iTROLLABLE PITCH PROPELLER, 
PROPELLER 4668. 
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the case of propeller 4660, and high accuracy is not possible.  The 

influence of fillets on wings is important for accuracy [Klein, 1934]. 

When the advance coefficient was reduced to 0.529, the load was 

increased, as was the strength of the trailing vortex sheets.  Errors may 

occur in measured data in this flow condition, because the data density was 

relatively low. This explains the discrepancy between the experimental 

results and the analytical results in Figure 6.3 It was found that the 

thrust and torque measured directly by the load cell were almost equal to 

those given by the analytical solutions (see next section).  This meant 

that the measured circulation was innacurate.  If the measured circulation 

was increased uniformly so that it matched the circulation of the 

analytical solution at mid-span, then we would find that the circulation 

measured at the hub was just midway between the two predicted circulations. 

The overprediction at the root by PSF2-HUB was, once again, due to over- 

solidity at the hub by the model.  The underprediction of the circulation 

at the root by FSF2 was due to the under-solidity at the hub by PSF2. 

6.2 Comparison of Forces 

The force on an isolated blades-hub configuration can be divided into 

two parts, the force on the blades and the force on the hub.  Because of 

the existence of a hub vortex at the hub apex, the force on the hub can be 

further divided into two parts:  the force in the area inside the hub 

vortex core and the force in the area outside the the hub vortex core.  The 

force on the blades and on the hub outside the hub vortex was calculated In 

section 3.7.7.  The calculation of the force in the area inside the hub 

vortex core was put off until now because little was known of the structure 
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of the hub vortex in section 3-1-l-    Now, we know from the experiments in 

Chapter 5 that the hub vortex has a universal structure — a Rankine type 

vortex.  The force in the area inside this hub vortex can be calculated as 

follows. 

Suppose there is a hub vortex core with strength r^ and radius r^ at 

the hub apex and extending an infinite distance in the downstream 

direction, as shown in Figure 6.5a.  Also, assume that the vortex is a 

Rankine vortex. 

blodfl 

I'M        Hub 

uniform vortlcity 

Fig. 6.9o Hub and Simi-Infinite 
Long Hub  Vorttx 

1 N 

Fig.6.5b Simpliod Hub 
end Soffii-lnftnitt 
Long Hub Vertoi 

For an infinitely long Rankine vortex, the velocity distribution v^^Cr) is 

[Milne-Thomson, 1969]: 

vt(r) 
2TTr: 

_ 1 
27r r 

r < r. 

r ^ r. 

(6.1,a) 

(6.1.b) 
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And the circulation distribution r(r) is: 

r(r) 

r ^ r. 

r ^ r. 
(6.2) 

The equation of motion [Batchelor, 1967] is: 

J_ dp ^ _t 
p dr  r (6.3) 

The dynamic boundary condition is: 

p ^ p_  as  r (6.i<) 

and the pressure is continuous at r = r^^. 

Integrate (6.3) with v^ replaced by (6.1.a), obtaining: 

P = TTT " ^ Po    r- < r, 
STT r^ 

(6.5) 

where p^  is the pressure at r = 0. 

Integrate  (6.3) again,  with v^ replaced by  (6.1.b),  and invoke  (6.M), 

obtaining: 

pr 
0     1 

P = Poo r > r 
877"  r' 

(6.6) 
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The pressure is continuous at r = r.  — thus,  from (6.5)  and  (6.6): 

pr; 
Po   =   P 0 '^oo 

4TTV; 
(6.7) 

This is the minimum pressure. The pressure coefficient C is: 

P - Pa 

2Trnv„ 

r > r. 

r < r. 

(6.8) 

where v„ is the velocity at r = «. v^, r, and C are plotted in 

Figure 6.6. Cavitation begins when p^^ equals p^, the vapor pressure, and: 

= - r  p  1 
2ir L P„ - p„ J 

1/2 

Poo - Py J 
(6.9) 

Now the force, Fj, inside the hub vortex core is: 

fr. 
2Tr(p - p„)rdr (6.10) 

Substituting (6.5) and (6.7) into (6.10), we obtain: 

= - ^ P r^ 
I      16 IT   0 (6.11) 
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Notice that the force inside the hub vortex core only depends on r .  The 

force on the hub, induced by a semi-infinite hub vortex, in the area 

outside the hub vortex core is bounded by the force F on an annulus 

between r^,   the hub radius, and r^ (see Figure 6.5.b):      - . 

Fe 2TT(P - Pjr6r _ (6.12) 
r. -     • 

The velocity induced by a semi-infinite vortex is one-half of (6.1.b) and 

the pressure becomes:        •■ ! , 

<   1 
f 

P = P«>  —   r i r^ -   ., (6.13) 
32TT^ r^ ..    ■■ 

From (6.12) and (6.13): 

'e.= "16^^"?;  , (6.1^) 

The ratio of F^ to Fj is: 

^e  1    -^H , ,  ' 
p^= 3 m- -^^   _ :     ■      (6.15) 

So, Fe will be smaller than Fj if r^ is greater than e~^ r^,  or 0.05 r^j. 

In other words, Fg will be smaller than Fj if r^ is smaller than 0.015 R of 

a propeller of 30? hub and 0.01 R of a propeller of 205^ hub.  These upper 

bound limits are useful.  In the numerical model, the last control point is 
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at the middle of the last vortex ring and the hub apex.  The position of 

the vortex ring is controlled by the trailing vortex sheet.  In other 

words, there is no freedom to choose the last control point arbitrarily- 

close to the hub vortex.  This may underestimate the force outside the hub 

vortex core. However, the upper bound value of Fg tells us the error from 

this model would be on the order of Fj, because the size of r^ is usually 

greater than two percent of the propeller radius, from experimental data 

(see section 5.7.5). 

In order to compare the force on the hub with the force on the blades, 

several nondimensional force coefficients are defined.  Fj and F are 

nondimensionalized with respect to pn^D"* just as the thrust T was: 

^1 

^^I  pn^D^ '   ^'^^ 

^e 
K 

e  pn D 

JT^ 

R^s 

RV3. 

(6.16) 

^H ■ ■ 
m —        . (6.17) 

The force on the hub calculated by the program PSF2-HUB is called Fg 

which is also nondimensionalized with respect to pn^D"* and is called Kp anu IS uaiiea N^ 
E 

The force coefficients calculated by the program PSF2, PSF2-HUB, and 

measured from experiment are shown in Table 6.1. 

In Table 6.1, K^ is the force on the blades, Kp- is the force on the 

hub outside the hub vortex core.  K^  is the upper bound force by (6.17), 
e 

and Kp is the force inside the hub vortex core by (6.16). The values of 

Tj, and r^  are measured.  (K-p)^^^^ is the summation of K^, K^ , and Kp . 
E       I 
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Propeller  J  Method     K^    Kp^    Kp^    Kp^  (^^net   '^Q 

4498   0.889 PSF2-HUB  0.245 -0,001  -0.001  -0.003  0.241 0.68? 
PSF2      0.240 ,         0.240 0.691 
experiment 0.242 0.242 0.659 

4660   0.976 PSF2-HUB  0.283 -0,005  -0.000  -0.000  0.278 0.660 
PSF2      0.280 0.280 0.674 
experiment 0.279 0.279 0.647 

0.529 PSF2-HUB  0.546 -0.009  -0.001  -0.002  0.535 0.396 
PSF2      0.525 0.525 0.413 
experiment 0.522 0.522 0,391 

Table 6,1  Comparison of force coefficients of theretical predictions 
with those of experimental measurements 

The thrust on the blades of propeller 4498 was increased by about 2% 

due to the effects of the hub.  But, the drag on the hub was about 1,5^ of 

the total thrust.  So, the net force is almost the same as in the case of 

ignoring the hub totally.  The drag inside the hub vortex core is about 1% 

of the total thrust and the force ouside the hub vortex is about 0.55^.  As 

for a larger hub (propeller 4660), the drag outside the hub vortex is 

larger (look at Kp, values).  The drag inside the hub vortex core is 

proportional to the square of JT^/{B.V^).     At lower J, the r^ is much larger 

than the high J.  So the drag inside the hub vortex is larger for J = 0.529 

than for J = 0.976 for the same propeller. The torque coefficients  ( 

predicted by PSF2-HUB are better than those predicted by PSF2. 

6,3 What Was Wrong with the Torpedo Propeller? 

As mentioned in Chapter 1 , a model test of a torpedo propeller 

No, 1010 had a reduction of thrust of 45 percent because of the existence 

of a strong hub vortex.  This propeller was designed to be heavily loaded 
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at the hub. The pitch diameter ratio was 2.305 uniformly from hub to tip, 

and the inflow was decreasing from 0.971 of free stream at the tip to 0.^ 

at the hub.  The advance coefficient was 2.305.  The design value of 

r/(RVg) at the hub was 0.1377.  The number of blades was 8.  In order to 

estimate the circulation of the hub vortex, the loss of circulation from 

upstream to the after face of the hub should be estimated first.  The 

experimental data in 5.7.5 shows that the loss of circulation was 15!^ for 

propeller 14498 at design J (0.889) and 25$ for propeller 4660 at off-design 

J (0.525).  These two propellers had a rotating fairing, while propeller 

1010 had a stationary fairing, which may lose more circulation due to the 

concept of relative motion. Also, the fairing of the propeller 1010 had a 

blunt face which meant even more loss of circulation due to turbulence. A 

loss of 61%  of the circulation was observed in the experiment with 

propeller 4498 without a fairing (see section 5.7.5.C).  An estimate of 505^ 

loss may be reasonable. We define a thrust load coefficient as: 

C^ - - 

2PV;uR' 
(6.18) 

and define the nondimensional  drag coefficients: 

I       ^pV^.R^ TTRV, (6.19) 

Fp 1     ,,2     D2 TTRV, 
In (6.20) 
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where (6.11) and (6.14) are applied,  r. is estimated as: 

To 
•^rj- = (8)(0.1377)(0.5) = 0.55 

A measurement from Figure 5.1 of [McCormick et al., 1956] shows r'u/r^  = 

3.68.  Then, the total reduction of thrust coefficient may be estimated as: 

C +   C =   -  — [^r-H^r-3.68=0.0,6 

The measured value of reduction of thrust coefficient was 0.018.  So the 

results are very encouraging. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1  Conclusions 

A numerical lifting surface theory which takes account of hub effects 

has been developed for the design of propeller blades.  An example with 

zero circulation at both ends of the blades is given in Chapter 3. The 

design which incorporates hub effects has lower values of pitch and camber 

at the root section than the hubless design. , 

The same theory has been applied to the analysis problem. Two 

examples are given in Chapter 5, along with comparisons to the experimental 

data.  The examples show that, for a conventional propeller with relatively 

large pitch and camber at the root, the predictions with hub effects 

considered are much more accurate than the predictions with hub effects 

ignored.  For a CP propeller, with relatively small pitch and camber at the 

root, the theory overpredicts the circulation when hub effects are 

considered.  This overprediction occurs for two different advance 

coefficients, and is believed to be due to the complicated geometry of the 

blade fillets, bolts, cutoffs, etc. The leakage of pressure through the 

cutoffs makes the hub less solid.  The fillets and bolts may generate 

complicated flow patterns which reduce the circulation. 

An experiment was performed to demonstrate that the circulation is, 

roughly speaking, conserved along circumferential mean streamlines.  This 

is based on the assumption that the vortex sheet follows the mean 

streamlines.  The circulation at the blade root decreases 15 to 25%  by the 
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time it reaches the hub apex, depending on the tangential speed of water 

particles relative to the hub surface.  The circulation may increase due to 

the motion of the hub surface relative to water particles, if the 

circulation is essentially zero at the hub in the propeller plane. 

The estimated force on the hub has two components.  The force outside 

the hub vortex core was calculated numerically. The force inside the hub 

vortex was calculated based on the experimental data.  It was confirmed 

that the hub vortex has a Rankine-type structure.  The strength of the hub 

vortex was measured, enabling the force to be calculated by Equation 

(6.11).  In general, the thrust on blades is increased by the hub effect 

due to a higher circulation maintained at the root section. However, drag 

on the hub will reduce the thrust by almost the same amount that it is 

increased.  This is only true for propellers with a light load at the root. 

For propellers which are heavily loaded at the root, e.g., the torpedo 

propeller mentioned in Chapter 6, the gain in thrust due to the hub may be 

less than the loss due to the hub vortex.  The estimate of the thrust 

reduction due to the hub vortex is very close to the experimental result 

for the torpedo propeller, although the accuracy of this estimate depends 

on the accuracy of the estimated loss of circulation.  Experimental data 

are needed to establish an empirical formula for a hub with a blunt end, or 

to solve the axisymmetric flow boundary layer problem (e.g., Wilcox, 1979). 

The bound circulation may be kept finite at the root due to the hub 

effects.  The slope of the bound circulation must be zero at the root for a 

potential flow in order to satisfy the normal boundary conditions at the 

hub (e.g., McCormick, 1955, Figures 1 and 2). This is because a non-zero 

slope for the circulation gives a non-zero strength for the trailing vortex 

sheet at the hub, which in turn violates the boundary conditions at the 
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hub.  In formulating the boundary value problem for velocity potential, the 

condition of zero slope for the circulation at the hub is not necessary. 

It is automatically satisfied if the normal boundary condition is satisfied 

at the hub. 

If distributed singularities are used in place of the velocity 

potential, then there are two ways to treat the zero slope for the 

circulation. The first is to use an image at the hub to "carry over" the 

lift (see Chapter 1).  The second is to use the method presented in this 

thesis. The condition of zero slope is not explicitly given in the problem 

formulation (see section 3-5).  However, the boundary conditions at the hub 

control point will cause the net strength of the helical vortex, at the 

intersection of the trailing vortex sheet and the hub, to be equal to zero. 

The numerical result confirms this.  Basically, both methods are correct, 

as long as the boundary conditions at the control points are satisfied. 

In measuring the velocity field of a propeller using an LDA and a 

tracker, care should be taken with the data density, especially for the 

radial components of velocity, which have an orientation parallel to the 

jump velocity of the trailing vortex sheet.  The bandwidth limitation of 

the tracker was not well known by the researchers who used the LDA and the 

tracker.  Kobayashi [1981] found that there was a discrepancy in the 

velocity measurement at different propeller speeds, while J was constant. 

However, there was no explanation for the discrepancy.  Okamura [1983] 

measured an outward radial velocity, in the tip vortex flow region, which 

was as large as 1.5 times the free stream velocity.  This conflicts with 

the fact that the flow contracted inwards. 

The problem with data density using a tracker can be solved by 

reducing the propeller speed. However, this may reduce the Reynolds number 
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below a critical point, thus altering the viscous drag. An alternative 

method uses a counter which accepts all the signal and noise.  A counter is 

usually good for flow with a low data density. However, the counter has to 

filter out the noise.  The data density is inversely proportional to the 

local velocity, which changes periodically in time for a propeller flow.  A 

filter which allows the bandwidth and central frequency to be changed may 

be needed. 

7.2 Recommendations 

1. The input circulation for the propeller blade design is somewhat 

arbitrary, although it usually results from a lifting line calculation. 

It has zero circulation at the hub, which usually results in a very low 

pitch, and small and even negative camber at the root section.  This 

brings up the problem of manufacture.  It may mean that a slight 

increase in the circulation at the root is necessary, although this 

increase should not be too large or else a strong hub vortex cavity and 

a thrust reduction may occur.  The estimatation of drag due to the hub 

vortex can be made using the approach of this thesis. 

2. In order to avoid guessing blindly in modifying the circulation, a new 

design concept may be used.  First, design the blade without considering 

the hub effect — this blade usually has a higher pitch and camber at 

the root and is easier to manufacture.  Then, carefully analyze the 

blade loading considering hub effects. Modify the blade geometry so 

that there is a more uniform loading over the chord of the blade. 
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3. In order to make the analysis of blade loading more accurate, it would 

be desirable to replace the camber surface singularity distribution with 

a surface singularity distribution over the blade. 

4. An image method may be adopted for the blade singularities and trailers 

(e.g., Kerwin and Leopold, 1954). This will reduce the strength of the 

surface singularities over the hub, thus increasing the accuracy of the 

pressure calculation. 

5. Research may be necessary to Investigate the instability in the stream 

function at outer radii, as found in section 5.7.2.  The mean 

streamlines were found to be wiggling at outer radii when the stream 

function method was used.  The reasons for this should be determined. 
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APPENDIX 

This appendix will illustrate the reduction in the number of unknown 

strengths on the hub, using the concept of key hub. 

Suppose there is a set of linear algebraic equations in matrix form: 

11 

21 

3 1 

tl 

'«l 

*1 

12      13 1 "♦      15 

2 3      2'* 

32      33      SH      35 

^ 2      H 3      ■♦ t ^ 5 

52       53       5H       55 

62 6 3     e"* 

1 6 ■yr c; 

2 6 y. C2 

3 6 y. C3 

H6 y. c. 

5 6 Ys C5 

6 6-' 1^6- -^6- 

(A-1) 

which has the following properties: 

y, = y, = y. Ci = C3 = c. 

J 2     -^ t+     -^6 
c = c = c 2      H      6 

Then  (A-1)   becomes  three sets  of  equations: 

'^^11  *  ^13  ^  ^15' 

(a      + a      +  a •^21 2 3 2 5' 

(a, +  a,J" 

(a      + a      +  a     ) ^22 2 It 26'-' 

yi 
(A-2) 

(a      +a      +a)       (a      +a      +a) ^31 33 35' ^32 3h 36' 

.(a,,  + a^3  +  a^^; (a      +  a      +  a     ) 17 u- 
(A-3) 



190 

(a  +a  +a)  (a  +a  +a) 

(a  +a  +a)  (a  +a  +a) ^61      63      65'     ^62      64      66'" 1^6-1 

(A-4) 

Suppose further that we assume that 

= a. 

= a. 

= a, , = a. 

(A-5) 

Then, (A-3) and (A-'^) become redundant to (A-2) and only equation (A-2) 

needs to be solved.  Thus, the unknowns are reduced by a factor of three. 

Suppose we have exactly six helical vortices on the whole hub surface 

and only two helical vortices in the key blades of a three-bladed 

propeller. Six vortices numbered from one to six are spread over the whole 

hub surface at equal angular spacings, and six control points numbered from 

1' to 6' are located in the middle of vortices as shown in Figure A.I. 

Then the influence coefficients have exactly the same relationships as 

in (A-5), if i, the first index of a^::, is replaced by i' (for example, if 

1 is replaced by 1', a^,^ means the velocity induced at 1' by a unit vortex 

at 5).     ■ 

In order to save the storage, only the key hub information is stored, 

namely, the grid points, control points, and normal vectors.  The lack of 

information about control points is easier to generate than grid points. 

So, a^j in (A-2) is replaced by a^^ from (A-5) and the control point at 3' 

is generated from the control point at 1' by shifting an angle of blade 

interval 2IT/K.  One thing to be careful of is that the induced velocity 7^^ 



"Jf 

key blode 

key hub 

the 2"*^blade 
Figure A.I  Vortex Points and Control Points on Hub Section 

is recovered by shifting the velocity 7^^ back an angle 2IT/K.  Certainly 

this shift only affects the v and w components, not the u component.  After 

treating the other coefficients in (A-2) the same way as a^^,  we obtain 

(^i: * ^s,  ^ ^3^   (a^, + a,, + a^J 

(a,i + aei ^ a^j)   (a^, + a,, + a,,). 

re, 

.c,. 
(A-6) 

which has three times fewer unknowns. 
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